“(We) look at trends in the New
Orleans area across 3 decades to get the entire
view of the health and vitality of the city as a
measure of the city’s resilience…”

Allison Plyer, Greater New Orleans
Community Data Center, January 20, 2011

4


Measuring Progress Toward Resilience

THE NEED FOR METRICS AND INDICATORS

The committee recognized early on in its discussions that the study’s focus on improving resilience necessitates measurement, a position also indicated in the study’s Statement of Task (see Chapter 1). Measurement is essential for several reasons. First, it would be impossible to identify the priority needs for improvement without some numerical means of assessment. Second, a system of measurement is essential if progress is to be monitored. Third, any effort to compare the benefits of increasing resilience with the associated costs requires a basis of measurement. Establishing a baseline or reference point from which changes in resilience can be measured, combined with a regular system of monitoring to track changes through time, is also necessary. However, the measurement of a hard-to-define concept is necessarily difficult, requiring not only an agreed-upon metric, but also the data and algorithms needed to compute it. Resilience also includes human (social) and physical (infrastructure, natural environment) components that add complexity and challenges in finding metrics that cover this range of factors. This chapter discusses some of the more important principles and issues connected with measuring resilience. It examines the available methods, data, and tools, and makes recommendations designed to implement one type of measuring system for resilience.

One national-scale metric of resilience could be the dollar amount (per capita) of federal assistance spent annually for disasters, with the measure for resilience being whether this dollar amount flattens or declines (potentially indicating increasing resilience) or continues its steady growth (potentially indicating that resilience is not increasing, or is not increasing at a significant rate nationally). While imperfect, such an indicator provides a valuable



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 91
"(We) look at trends in the New Orleans area across 3 decades to get the entire view of the health and vitality of the city as a measure of the city's resilience..." Allison Plyer, Greater New Orleans Community Data Center, January 20, 2011 4 Measuring Progress Toward Resilience THE NEED FOR METRICS AND INDICATORS The committee recognized early on in its discussions that the study's focus on improving resilience necessitates measurement, a position also indicated in the study's Statement of Task (see Chapter 1). Measurement is essential for several reasons. First, it would be impossible to identify the priority needs for improvement without some numerical means of assessment. Second, a system of measurement is essential if progress is to be monitored. Third, any effort to compare the benefits of increasing resilience with the associated costs requires a basis of measurement. Establishing a baseline or reference point from which changes in resilience can be measured, combined with a regular system of monitoring to track changes through time, is also necessary. However, the measurement of a hard-to-define concept is necessarily difficult, requiring not only an agreed-upon metric, but also the data and algorithms needed to compute it. Resilience also includes human (social) and physical (infrastructure, natural environment) components that add complexity and challenges in finding metrics that cover this range of factors. This chapter discusses some of the more important principles and issues connected with measuring resilience. It examines the available methods, data, and tools, and makes recommendations designed to implement one type of measuring system for resilience. One national-scale metric of resilience could be the dollar amount (per capita) of federal assistance spent annually for disasters, with the measure for resilience being whether this dollar amount flattens or declines (potentially indicating increasing resilience) or continues its steady growth (potentially indicating that resilience is not increasing, or is not increasing at a significant rate nationally). While imperfect, such an indicator provides a valuable 91

OCR for page 91
92 DISASTER RESILIENCE: A NATIONAL IMPERATIVE synoptic, national picture, but other metrics would be required to measure the progress of individual communities. Metrics are an important tool of administration. They allow targets to be established and set clear goals for improvement. The very act of defining a metric, and the discussions that ensue about its structure, help a community to clarify and formalize what it means by an abstract concept, thereby raising the quality of debate. The general concept of resilience is one with which most people are familiar, but resilience is not something that communities have much experience in measuring. Resilience is also clearly influenced by multiple factors, making precise measurement very difficult. This immediately suggests a strategy of combining various factors, using appropriate weights, into a composite index. The set of factors, how they are measured, the weights given to each factor, and the operations used to combine them into a composite index all present issues that can be the subject of lengthy debates and contention. At the same time, the translation of an abstract concept into a rigorous procedure for measurement--the formalization of the concept--allows for monitoring, the comparison of progress in different communities, and the prioritization of actions and investments, all of which can be extremely helpful. The effects of actions and policy changes can then be monitored through time to produce more desirable outcomes in the future by comparing improvements in resilience that result from those actions to what was promised or predicted, iteratively modifying actions and policies, and perhaps recalibrating metrics. To be useful in this context, a resilience metric needs to be open and transparent, so that all members of a community understand how it was constructed and computed. It needs to be replicable, providing sufficient detail of the method of determination of a community's resilience so that it can be checked by anyone using the same data. It must also be well documented and simple enough to be used by a wide range of stakeholders. Metrics may be quantitative, but metrics with no more than ordinal properties still allow resilience to be ranked and progress to be monitored. For example, a metric might set the qualitative levels "unsatisfactory," "marginal," and "satisfactory" resilience, without specifying quantitative measures or ranges for each level, as long as the procedure for arriving at a rating was open, transparent, and replicable. A scale similar to those used in academic report cards with designations of A, B, C, D, or F could also be used to indicate progress. In recent years, much of this process of defining a metric has been the subject of extensive research, often under the rubric of multicriteria decision making (MCDM). Many of these methods have been devised for problems embedded in geographic space, such as the selection of a site for a new public facility, or of a route for a new highway. The geospatial nature of such problems raises additional issues such as estimating environmental, social, and economic impacts of site selection for the new development and the way in which the necessary data to gauge these impacts can be incorporated into a collective planning process, as several texts make clear (see, e.g., Massam, 1993;

OCR for page 91
Measuring Progress Toward Resilience 93 Malczewski, 2010). The methods deal effectively with the disparate views of stakeholders, allowing consensus to emerge and measuring the degree to which consensus exists. For example, the analytical hierarchy process (Saaty, 1988) is a much-applied method for reconciling divergent views in the creation of a consensus metric. Many of these principles are illustrated by the well-known LEED (Leadership in Energy and Environmental Design; Box 4.1) process, released by the U.S. Green Building Council in March 2000. By providing an open forum for the measurement of environmental sustainability of buildings, LEED has provided an important tool for promoting and achieving energy efficiency. LEED was a bottom-up initiative without any initial endorsement from government agencies. It has gained popularity in engineering and architectural design as an added value to building occupants and to the environment in general. It has also become a trademark of socially conscious organizations in the private sector. The committee was struck by the impact LEED has had and seeks to emulate its success by envisioning a similar strategy for the measurement of resilience, laid out in the final section of this chapter. BOX 4.1 Leadership in Energy and Environmental Design LEED, or Leadership in Energy and Environmental Design, is an internationally recognized green-building certification system. Developed by the U.S. Green Building Council (USGBC) in March 2000, LEED is a framework for building owners and operators that allows identification and implementation of green building design, construction, operations, and maintenance. LEED promotes sustainable building and development practices through a set of rating systems that recognize building projects that have adopted strategies for better environmental and health performance. The LEED rating systems are developed through an open, consensus-based process led by LEED committees comprising groups of volunteers from across the building and construction industry. Key elements of the process of developing LEED rating systems include a balanced, transparent committee structure, technical advisory groups for scientific consistency and rigor, opportunities for stakeholder comment, member ballot of new rating systems, and fair and open appeals. LEED can apply to all building types, whether commercial or residential. LEED works throughout the building life cycle from design and construction through to tenant fitout and retrofit. LEED for Neighborhood Development is designed to allow the benefits of LEED to extend beyond a single building and into the neighborhood it serves. SOURCE: http://www.usgbc.org/DisplayPage.aspx?CMSPageID=1988.

OCR for page 91
94 DISASTER RESILIENCE: A NATIONAL IMPERATIVE While LEED focuses primarily on buildings, the thrust of this chapter's discussion is on the resilience of communities and their complexities. For example, a metric of the overall resilience of an entire city may mask substantial variations within the city. Carried to an extreme, we might conceive of resilience as varying continuously over the Earth's surface, similar to the way elevation varies, and scale-dependent in both space and time. Moreover, resilience is a function of many factors, not all of which may be the same for all people, even when those people occupy the same location. Problems such as these are familiar to geographers and others who work with geospatial data, and are commonly termed the Modifiable Areal Unit Problem (see, e.g., Longley et al., 2011). Such problems arise when the results of an analysis, such as the measurement of resilience, depend on the areas used for the analysis. We might find, for example, that neighborhoods in some areas of New Orleans are substantially more resilient than other neighborhoods and that New Orleans as a whole has a resilience in the middle of the range, when compared with other places. By selectively lumping neighborhoods together, in other words, by modifying the areal units in a process similar to gerrymandering electoral districts, one could produce a map that sharply and misleadingly contrasts highly resilient areas and much less resilient areas. The committee recognized the need to address this problem in any recommended system of measurement. The key is the concept of community, and its requirements of self-identification and mutual affinity, allowing a community, its members, and its boundary to be treated as an existing, well- defined area. In this sense a neighborhood, a town, or an entire city might all qualify as communities; and a community need not be formally recognized as an administrative unit, or precisely defined by a boundary on the Earth's surface. Any individual might belong to more than one community, each with its own measurement of resilience; a New Orleans resident might live in a highly resilient neighborhood, but in a city of relatively low resilience. With this principle as its foundation, and no possibility of arbitrary or selective gerrymandering, the process of measurement of community resilience becomes much more straightforward. Essentially, and recalling a long-recognized duality in geography and related disciplines (e.g., Tuan, 2007), resilience needs to be addressed by reference to place and not space. MEASURES OF U.S. NATIONAL RESILIENCE Many organizations have tackled the problem of measuring resilience, or its close relative vulnerability, for the United States. This section reviews many of these efforts, choosing specific representative examples for detailed discussion.

OCR for page 91
Measuring Progress Toward Resilience 95 Coastal Resilience Index The Coastal Resilience Index, cosponsored by the Louisiana Sea Grant, Mississippi-Alabama Sea Grant Consortium, and the National Oceanic and Atmospheric Administration Gulf Coast Services Center (Emmer et al., 2008), provides an example of a community-based approach to developing an index of resilience to storm events through self-assessment. It adapts the principles outlined by FEMA (2001) to the specific needs of coastal hazards and operationalizes them into an ordinal metric. The community is first asked to identify two scenarios from memory: a "bad storm" and a "worst storm." Critical infrastructure and facilities are then evaluated: Were they impacted in either or both of the scenarios, and were they functioning afterward? Critical infrastructure includes the wastewater treatment system, the power grid, the water purification system, and transportation/evacuation routes. Critical facilities include government buildings, law enforcement buildings, fire stations, communication offices, the emergency operations center, evacuation shelters, hospitals, and critical record storage. The community is encouraged to expand these lists as appropriate. The numbers of critical infrastructure elements and critical facilities that continued to function after the scenarios are then totaled. In the next step, the community is asked to assess whether various elements of its transportation system will be restored within 1 week after a "bad storm," and again to total the number of such elements. The third step asks for information on the participation of the community in various plans and agreements, and whether it has key personnel in place with responsibility for disaster-related matters. The number of positive responses is counted. Step 4 yields a total for ongoing mitigation measures, Step 5 addresses business plans for the recovery of retail stores, and Step 6 asks about social networks and civic organizations. The totals in each step are next transformed to Low, Medium, and High categories based on specified ranges--for example, to gain a High rating on critical infrastructure the community must have agreed that 100 percent of its elements would be functioning after a disaster. No weights are applied to each element; rather, the community is asked simply to count. The result is a total of seven metrics (two from Step 1 and one from each of the subsequent steps). The community is advised to treat these as separate indicators and not to attempt to combine them into a single metric. The Low, Medium, and High resilience ratings are then converted into an overall state-of-the-community resilience for a specific category, along with some estimate of the time it would take for reoccupation of the community after the disaster: more than 18 months for a Low rating; less than 2 months for a Medium rating; and minimal impact for a High rating.

OCR for page 91
96 DISASTER RESILIENCE: A NATIONAL IMPERATIVE Argonne National Laboratory Resilience Index A very different approach to measuring the resilience of critical infrastructure is described by Fisher et al. (2010), the result of a project conducted by Argonne National Laboratory in collaboration with the U.S. Department of Homeland Security's Protective Security Coordination Division. Data are gathered at critical infrastructure facilities by trained interviewers known as Protective Security Advisors (PSAs). The interviews use an Infrastructure Survey Tool covering roughly 1,500 variables that cover six major physical and human components (physical security, security management, security force, information sharing, protective measures assessment, and dependencies) that are themselves broken down into 42 components. The approach is used for one or several types of critical infrastructure or key resource sector (banking and finance, dams, energy, etc.). Data are subjected to an elaborate, six-step process of quality control involving review by experts in critical infrastructure protection. A five-stage aggregation process is then used to combine the items into a single Resilience Index (called the Protective Measure Index PMI) that ranges from 0 (lowest resilience) to 100 (highest resilience) for a given critical infrastructure or key resource sector and for a given threat. Each of the stages takes a subset of items at that stage and combines them using weights to obtain a single index for the next stage. From roughly 1,500 items at Level 5, this process results in 47 composite scores at Level 2, three at Level 1, and finally a single score. At Level 2, 18 of the 47 measures contribute to Robustness at Level 1, five to Recovery at Level 1, and 24 to Resourcefulness at Level 1. At each stage, every contributing measure is multiplied by a weight, and the products are summed to obtain the PMI composite index. Weights are obtained by analyzing the opinions of experts, using the MCDM methods of Keeney and Raiffa (1976). PMI ratings by sector (e.g., commercial facilities, energy, transportation, water) may help in identifying the infrastructure facility that is weakest in relation to one or several threats. In contrast to the bottom-up elements of the Coastal Resilience Index, this approach is almost entirely top down, reflecting the need of a national program to be uniform and universal in its approach. There is no possibility of adaptation to local needs, by modifying either the set of data items or the weights, both of which are prescribed. The index is entirely concerned with critical infrastructure, such a narrow focus being more conducive to a rigorous, quantitative approach. Nevertheless, justifying universal weights resolved to three decimal places is difficult given the inherent vagueness of the concept of resilience and its essential components, and uncertainties over the exact nature of threats.

OCR for page 91
Measuring Progress Toward Resilience 97 Social Vulnerability Index (SoVI) Social vulnerability is the susceptibility of a population to harm from a natural hazard and examines those characteristics of the population that influence their resilience. Vulnerable populations may be less resilient to hazards and disasters than other parts of the population, may need special assistance in preparing for, responding to, and recovering from disasters, and may be more susceptible to economic or other impacts from an event. Social vulnerability is place-based and context-specific, and helps explain why some portions of the country or community experience a hazard differently, despite having the same exposure. Income is but one variable that is often associated with vulnerable populations, and income levels clearly vary by race and ethnicity (Figure 4.1). Other vulnerable populations may include special-needs populations such as residents with physical or mental impairments, the elderly, the young, and those with limited access to transportation (see also Chapter 5). FIGURE 4.1 Trends in median household income in the United States. Data show income level variations by race and ethnicity. Source: U.S. Census Bureau. Social vulnerability helps us to understand the inequalities in disaster impacts and is a multiattribute concept that includes socioeconomic status, race and ethnicity, gender, age, housing tenure, and so forth and how these factors influence a community's resilience (Mileti, 1999; Heinz Center, 2002; NRC, 2006). Social vulnerability can change over time and across space (Cutter and Finch, 2008) and can be measured both qualitatively and quantitatively (Birkmann, 2006; Phillips et al., 2010).

OCR for page 91
98 DISASTER RESILIENCE: A NATIONAL IMPERATIVE Social vulnerability metrics are increasing in sophistication and usage in both research and practice. Among the best known is the Social Vulnerability Index (SoVI), a metric that permits comparisons of places (block groups, census tracts, metropolitan areas, counties) (Cutter et al., 2003; Box 4.2). Mapping SoVI scores illustrates the extremes of social vulnerability--those places with very high values (the most vulnerable), and those with relatively low values (the least vulnerable) (Figure 4.2). SoVI captures the multidimensional nature of social vulnerability--vulnerability that exists prior to any hazard or disaster event. In addition to describing the relative level of social vulnerability, the metric also enables the examination of those underlying dimensions that are contributing to the overall score such as age disparities, socioeconomic status, employment, and special-needs populations. FIGURE 4.2 Social Vulnerability Index, 2006-2010. Areas in red denote higher levels of social vulnerability relative to other counties, whereas counties in blue show lower levels of social vulnerability. Mapping by standard deviations (represented here as top and bottom 20 percent) shows the extremes of the distribution, which is of greatest interest. HVRI = Hazard and Vulnerability Research Institute. Source: S. Cutter/HVRI.

OCR for page 91
Measuring Progress Toward Resilience 99 BOX 4.2 The Social Vulnerability Index (SoVI) SoVI is a statistically derived comparative metric to illustrate the variability in capacity for preparedness, response, and recovery at county and subcounty levels of geography. Using census data, SoVI synthesizes 32 different variables, using a principal components analysis and expert judgment, into a single composite value, which is then mapped to illustrate differences between places. Several factors consistently appear in the results of these analyses, including socioeconomic status, elderly, and gender; however, the relative importance of these factors is observed to be place specific. Since its inception, SoVI has been used by emergency planners as part of their state hazard mitigation planning (South Carolina, California, and Colorado) and has been incorporated into a number of digital products including the National Oceanic and Atmospheric Administration's Coastal Services Digital Coast. (http://www.csc.noaa.gov/digitalcoast/tools/slrviewer/index.html). See http://sovius.org for more details and applications. Baseline Resilience Indicator for Communities A new composite indicator called the Baseline Resilience Indicator for Communities (BRIC) was introduced to measure community resiliency (Cutter et al., 2010). BRIC acknowledges that resilience is a multifaceted concept with social, economic, institutional, infrastructural, ecological, and community components. The composite indicator is calculated as the arithmetic mean of five subindexes related to social, economic, institutional, infrastructural, and community resilience; ecological resilience is not included in the 2010 formulation. Each subindex is normalized so that the final indicator varies between 0 and 1. Cutter et al. (2010) proposed several applications of the proposed method to communities at different scales. An interesting case study relates to the spatial distribution of disaster resilience over 736 counties within FEMA Region IV (Figure 4.3). A second example deals with determining the resilience score of three metropolitan areas: Gulfport-Biloxi, Charleston, and Memphis. Both case studies show a clear ability to identify least-resilient areas at different geographic scales using an empirically based descriptive approach.

OCR for page 91
100 DISASTER RESILIENCE: A NATIONAL IMPERATIVE FIGURE 4.3 Spatial resolution of disaster resilience for FEMA Region IV. Source: S. Cutter/HRVI. SPUR Model The San Francisco Planning and Urban Research Association (SPUR) developed a set of metrics for measuring the resilience of the Bay Area with respect to earthquakes (SPUR, 2008). The process begins with the definition of an "expected earthquake," defined as one "that can reasonably be expected to occur once during the useful life of a structure or system," and in operation is one with a 10 percent probability of occurrence in a 50-year period. In the SPUR methodology, specific recovery objectives are defined in distinct time frames (Table 4.1): hours (3 to 72), days (30 to 60), and months (4 to 36). These target states of recovery and their time frames include those for hospitals, police and fire, the emergency operations center, transportation systems and utilities, airports, and neighborhood retail businesses, offices, and workplaces. Five categories of performance are defined for buildings ranging from A (safe and operational) to E (unsafe). Significantly, the goal for San Francisco was to have 95 percent of residents sheltering in place with 24 hours, requiring Category B performance for buildings. Although not all utilities might be functioning within 24 hours, the goal was to keep citizens in their homes and in their neighborhoods. The table provides the target states of recovery for San

OCR for page 91
Measuring Progress Toward Resilience 101 Francisco's buildings and infrastructure together with an assessment of the current status for each of 31 distinct criteria. The gap between desired performance and current status highlights which areas need most work. No attempt is made in the model to collapse the criteria into a single metric. This approach provides a useful template that could be applied to an entire city, or to any neighborhood or community for use in defining their critical criteria for recovery, creating a timeline using performance objectives to achieve it, all in support of longer-term resilience goals. TABLE 4.1 SPUR Model of Measuring Recovery from Earthquakes Note: The table provides a useful template for identifying critical areas for recovery, which could provide the basis for establishing resilience goals. Source: C. Poland/SPUR.

OCR for page 91
Table 4.3 Tasks Defined by HFA to Make Risk Reduction a National and Local Priority--HFA Priority 1 Making Risk Reduction a National and Local/City Priority with a Strong Institutional Basis for Implementation HFA Tasks Local National HFA Guiding Questions Tools Indicators Monitor Indicators Task 1 A local/city A. National Are different stakeholders engages in a Multistakeholder Engage in multisectoral multisectoral continuing dialogue for disaster risk dialogues; multistakehold platform for platform for reduction? management er dialogue to disaster risk disaster risk Is there political consensus on importance of information system establish reduction is reduction is DRR? foundations for functioning operational What is the degree of participation of civil disaster risk Political society in DRR? reduction commitment Is local/city government supportive to a (DRR) community vision for DRR? Task 2 Community B. Community Are community participation and Stakeholder Create or participation participation and decentralization ensured through the engagement strengthen and decentralization delegation of authority and resources to the mechanisms; local mechanisms decentralized are ensured local/city level? platform for DRR for systematic functions are through the Is there official policy and strategy to coordination ensured delegation of support community-based disaster risk for DRR throughout authority and management in the city? the local resources to local Are communities empowered to participate

OCR for page 91
authority levels in disaster risk reduction? Are city offices aware of their respective roles in reduction? Are there committed and effective community outreach activities (DRR and related services, e.g. healthcare?) Task 3 Policy C. A legal Is responsibility for DRR planning and Development plan; Assess and instruments framework for implementation devolved to city land use plan; physical develop the and tools to disaster risk government and communities? plan institutional support reduction exists Are city government and communities Budget allocation for basis for national with explicit equipped with human, financial, and DRR disaster risk institutional responsibilities organizational capacities/resources? Disaster management reduction and legal defined for all Are city government DRR policies, ordinance; building frameworks levels of strategies, and implementation plans in code; fire code; zoning Legal and government. place? ordinance regulatory Are there relevant and enabling legislation Specific ordinances system D. A national (ordinance), land use regulations, building policy framework codes, etc. addressing and supporting DRR for disaster risk at the local level? reduction exists Are thre mechanisms for compliance and that requires plans enforcement of laws, regulations, building and activities at codes, etc., and penalties for non- all administrative compliance defined by laws and levels, from regulations? national to local Is DRR integrated into planning at the levels local/city level in key sectors such as

OCR for page 91
agriculture, climate change, education, environment, health, housing, poverty alleviation, and social welfare? Are the roles and responsibilities for disaster risk reduction clearly designated? Is the legal and regulatory system underpinned by guarantees of relevant rights to safety, to equitable assistance, to be listened to and consulted? Task 4 Dedicated E. Dedicated and Are there institutional capacities for DRR at Disaster risk Prioritize DRR and adequate adequate the local/city level? management office; and allocate resources are resources are Is budget allocated to local/city covernment disaster coordinating appropriate available to available to and other local institutions adequate to council resources implement implement DRR enable DRR to be integrated into planning DRR plans at all and actual activities? activities administrative Are financial resources available to build within the levels partnerships with civil society for DRR? local Are there logistical, and other such authority resources allocated for DRR? Does the government provide training in DRR to local/city officials and community leaders? Is a system of accountability in place, including transparency in the conduct of DRR and use of funds? Source: R. Shaw and Y. Matasuoko, UNISDR

OCR for page 91
Measuring Progress Toward Resilience 109 Other International Resilience Metrics and Indicators Other international metrics and indicators for vulnerability, risk, and resilience have also been developed. Table 4.4 provides a brief summary of some of these. Table 4.4 Selected Summary of International Metrics and Indicators for Vulnerability, Risk, and Resilience United Nations The DRI, introduced in 2004, measures the average risk of Development death per country in three types of disasters (earthquakes, Programme tropical cyclones, and floods). It is a measure of (UNDP) Disaster vulnerability to a specific hazard that also accounts for the Risk Index (DRI) role of sociotechnical-humanistic and environmental issues that could be correlated with death and may point toward causal processes of disaster risks. The key steps in determining the DRI for a specific hazard include calculation of physical exposure in terms of number of people exposed to a hazard event in a given year; calculation of relative vulnerability in terms of number of people killed to number of people exposed; and calculation of vulnerability indicators using 26 variables. Based on the value of the DRI, and for a given specific hazard, countries are ranked according to their degree of physical exposure, relative vulnerability, and degree of risk (UNDP, 2004; Peduzzi et al., 2009). Inter-American The DDI, introduced in 2005, is an indicator of a country's Development economic vulnerability to disaster. It is limited to Latin Bank Disaster America and the Caribbean. DDI is a measure of the likely Deficit Index economic loss related to a disaster in a given time period (DDI) and for the economic coping capacity of the country (IDB, 2007). Inter-Agency Established in 1994, the IASC was created to be the Standing primary mechanism for interagency coordination of Committee humanitarian assistance at the international level. It is (IASC) In- composed of representatives of all 14 leading UN Country Team agencies, non-UN humanitarian agencies, and three Self-Assessment consortia of nongovernmental organizations. The In- Tool for Natural Country Team Self-Assessment Tool for Natural Disaster Disaster Response Response Preparedness consists of a support chart and a Preparedness checklist of issues and questions to self-assess the level of

OCR for page 91
110 Disaster Resilience: A National Imperative international standards. It also provides resources to address key concerns and propriety areas for disaster preparedness and response. See http://www.humanitarianinfo.org/iasc/. United Nations The World Risk Index, introduced in 2011 (UNU, 2011), University indicates the probability that a country or region will be Institute for affected by an extreme natural event (earthquakes, storms, Environment and floods, droughts, and sea-level rise). It also focuses on (i) Human Security, the vulnerability of the population (levels of poverty, World Risk Index education, food security, infrastructure, economic framework) to natural hazards, (ii) its capacity to cope with severe and immediate disasters as a function of governance, disaster preparedness, early warning systems, medical services, and social and economic security, and (iii) its adaptive precautionary measures against anticipated future natural disasters. The World Risk Index is also combined with local and project risk indexes. THE COMMITTEE'S PERSPECTIVE The preceding two sections have presented representative approaches to the measurement of resilience. They vary on many dimensions: top-down prescriptions versus community-based consensus; universal or adaptable, based on available data or requiring extensive data gathering; place-based or spatial, and focused on specific hazards and vulnerabilities or extensible depending on the context. This section introduces the committee's perspective, comments on each of these dimensions as they might apply to the committee's charge, and then moves to a discussion of the implementation of metrics. First, the committee visited three different areas--New Orleans and the Mississippi Gulf Coast, Iowa, and Southern California--and recognized the degree to which community concerns vary. New Orleans was recovering from a major storm event and Iowa from a major flood event, whereas Southern California has a history of disastrous wildfires and landslides and must prepare for a future major earthquake event. In the committee's view, therefore, any approach to measuring resilience has to address multiple hazards, and has to be adaptable to the needs of specific communities and the hazards they face. By contrast, the SPUR model (see earlier section) concerns only earthquake hazard, though it could perhaps be generalized to other hazards. Second, the committee met with communities of many sizes, from those in the greater metropolitan areas of Southern California to the small towns of the Mississippi Gulf Coast. It is clear that any approach the committee

OCR for page 91
Measuring Progress Toward Resilience 111 recommends must be place-based rather than spatial, in the meaning of those terms defined at the start of the chapter, and capable of dealing with a range of community sizes. Moreover some communities, such as the Lower Ninth Ward of New Orleans, will be very different in structure, spatial extent, and level of social organization than others. Again, the emphasis in the committee's approach to measuring resilience is on adaptability. This concern for community, place, and adaptability argues against any universal solution, such as that represented by the Argonne National Laboratory Resilience Index. Third, the committee recognizes that many dimensions must contribute to an index, from the physical resilience of the built and natural environment and critical infrastructure to aspects of human/social resilience such as the existence of strong social networks, a strong economic base, or good governance. The examples that yield a single index--SoVI, BRIC, and the Argonne National Laboratory Resilience Index--all focus on a single dimension, social vulnerability in the first case, community resilience in the second, and critical infrastructure in the third. SoVI's reliance on available Census data suggests that it would be difficult to extend its approach to other dimensions, while the Argonne approach requires substantial investment in data gathering, compared with the community-based data gathering of the Coastal Resilience Index, for example. KNOWLEDGE AND DATA NEEDS As mentioned in Chapter 3, the issues of data availability are critical not only for hazard and disaster informatics, but resilience metrics as well. However, it is not just data that constrain our ability to measure resilience. Better understanding on how to implement such a measurement system is also needed. What should be measured over what time frame and geographic scale? Should resilience be reassessed on a regular schedule, or should certain factors trigger a reassessment? Should scales be prescribed and uniform, or should they be adapted to meet specific circumstances? How should these indicators be measured (e.g., qualitatively, quantitatively)? Should these data be included into a single composite index or some other structure, and if a single index, how should the various components be weighted? By what means can it be determined that the right elements for the resilience index have been captured? How is the sensitivity of the index assessed? Addressing these issues through an integrated research program would assist the nation in providing the scientific backing for the development of a national resilience scorecard. Moreover, such a research program could provide useful insights by making a systematic comparison of the different metrics proposed in the literature. Besides addressing the questions raised earlier in this paragraph, it

OCR for page 91
112 Disaster Resilience: A National Imperative would be very useful to compare metrics on the basis of cost, and the time and effort needed to implement and evaluate them. SUMMARY AND RECOMMENDATION: IMPLEMENTING A MEASUREMENT SYSTEM With this background, we now turn to the committee's conclusions and specific recommendations regarding metrics and indicators. Related topics have been discussed at several points in the report, including Chapter 3, where we discuss the lack of consistent, reliable data on the impacts of hazards and disasters that might feed into the measurement of resilience. This chapter has focused on the importance of metrics and indicators that can be used to evaluate resilience, to provide baselines for comparison and the foundation for a system of tracking improvements. In essence, the committee concludes from the evidence gathered that without some numerical basis for assessing resilience it would be impossible to monitor changes or show that community resilience has improved. At present, no consistent basis for such measurement exists. We recommend therefore that a National Resilience Scorecard be established. Until a community experiences a disaster and has to respond to and recover from it, demonstrating the complexity, volume of issues, conflicts, and lack of ownership are difficult. A national resilience scorecard, from which communities can then develop their own, tailored scorecards, will make it easier for communities to see the issues they will face without being subjected to the event and can support necessary work in anticipation of an appropriate resilience-building strategy. A scorecard will also allow communities to ask the right questions in advance. In the preceding sections the committee's vision of such a scorecard was outlined. It should be readily adaptable to the needs of communities and levels of government, focusing specifically on the hazards that threaten each community. It should align with community goals and vision. It should not attempt unreasonable precision, either in the ways in which individual factors are measured, or in the ways they are combined into composite indicators. Rather, the scorecard should follow the examples presented earlier where qualitative and quantitative measures are mingled, and reduced where appropriate to ordinal (rankings) rather than interval or ratio scales. The various indicators reviewed in this chapter vary greatly depending on the dimensions they assess, the sources of data they employ, and the ways in which they combine data to obtain indicators. However, certain commonalities emerge and provide useful guidance in the development of a Scorecard. While maintaining its commitment to local solutions and not wishing to be overly

OCR for page 91
Measuring Progress Toward Resilience 113 prescriptive, the committee emphasizes that it is imperative to include certain dimensions in the Scorecard: Indicators of the ability of critical infrastructure to recover rapidly from impacts (see, e.g., Section 4.2.1); Social factors that enhance or limit a community's ability to recover, including social capital, language, and socioeconomic status, and the availability of a workforce with skills relevant to recovery (see, e.g., Section 4.2.3); Indicators of the ability of buildings and other structures to withstand the physical and ecological impacts of disasters (e.g., ground shaking, severe wind and precipitation, inundation, fires (see, e.g., Section 4.2.5); and Factors that capture the special needs of individuals and groups, related to minority status, mobility, or health status (see, e.g., the T*H*R*I*V*E model in Section 4.2.6). Although such a scorecard would be used as a self-assessment tool employed by individual communities, some central coordination and direction for the development of the scorecard is appropriate from the federal level. The committee concludes that responsibility for coordinating the development of a scorecard should rest with a single federal agency but be compiled through a national effort that engages with individuals and communities at all levels. The Department of Homeland Security appears to be the most appropriate agency for coordinating this collective endeavor. In summary, the committee concludes its work in the area of metrics and indicators with this recommendation: Recommendation. The Department of Homeland Security in conjunction with other federal agencies, state and local partners, and professional groups should develop a National Resilience Scorecard.

OCR for page 91
114 Disaster Resilience: A National Imperative REFERENCES Birkmann, J., ed. 2006. Measuring Vulnerability to Natural Hazards. New Delhi, India: TERI Press. BRR (Building Resilient Regions). 2011. Resilience Capacity Index. Available at: http://brr.berkeley.edu/rci/. CARRI (Community and Regional Resilience Initiative). 2011. Community Resilience System Initiative (CRSI) Steering Committee Final Report: A Roadmap to Increased Community Resilience. Available at: http://www.resilientus.org/library/CRSI_Final_Report- 1_1314792521.pdf. Cutter, S. L., and C. Finch. 2008. Temporal and spatial changes in social vulnerability to natural hazards. Proceedings of the National Academy of Sciences of the United States of America 105(7):2301-2306. Cutter, S. L., B. J. Boruff, and W. L. Shirley. 2003. Social vulnerability to environmental hazards. Social Science Quarterly 84(2):242-261. Cutter, S. L., C. G. Burton, and C. T. Emrich. 2010. Disaster resilience indicators for benchmarking baseline conditions. Journal of Homeland Security and Emergency Management 7(1). Available at http://www.bepress.com/jhsem/vol7/iss1/51. Emmer, R., L. Swann, M. Schneider, S. Sempier, T. Sempier, and T. Sanchez. 2008. Coastal Resilience Index: A Community Self-Assessment. A Guide to Examining How Prepared Your Community Is for a Disaster. NOAA Publ. No. MAS GP-08-014. Available at http://research.fit.edu/sealevelriselibrary/documents/doc_mgr/434/Gulf_Coast_Coastal_R esilience_Index_-_SeaGrant.pdf. FEMA (Federal Emergency Management Administration). 2001. Understanding Your Risks: Identifying Hazards and Estimating Losses. FEMA Publ. No. 386-2. Available at http://www.fema.gov/library/viewRecord.do?id=1880. Fisher, R. E., G. W. Bassett, W. A. Buehring, M. J. Collins, D. C. Dickinson, L. K. Easton, R. A. Haffenden, N. E. Hussar, M. S. Klett, M. A. Lawlor, D. J. Miller, F. D. Petit, S. M. Peyton, K. E. Wallace, R. G. Whitfield, and J. P. Peerenboom. 2010. Constructing a Resilience Index for the Enhanced Critical Infrastructure Program. Argonne National Laboratory/Department of Energy Report No. ANL/DIS 10-9. Available at www.ipd.anl.gov/anlpubs/2010/09/67823.pdf. Heinz Center (H. John Heinz III Center for Science, Economics, and the Environment). 2002. Human Links to Coastal to Coastal Disasters, Washington, DC: Heinz Center. IDB (Inter-American Development Bank). 2007. Indicators of Disaster Risk and Risk Management: Program for Latin America and the Caribbean. Available at http://www.iadb.org/exr/disaster/ddi50.cfm. Keeney, R. L., and H. Raiffa. 1976. Decisions with Multiple Objectives: Preferences and Value Tradeoffs. New York: Wiley. Longley, P. A., M. F. Goodchild, D. J. Maguire, and D. W. Rhind. 2011. Geographical Information Systems and Science, 3rd Ed. Hoboken, NJ: Wiley. Malczewski, J. 2010. Multicriteria Decision Analysis in Geographic Information Science. Berlin: Springer. Massam, B. H. 1993. The Right Place: Shared Responsibility and the Location of Public Facilities. Harlow, UK: Longman. Mileti, D. 1999. Disasters by Design: A Reassessment of Natural Hazards in the United States. Washington, DC: Joseph Henry Press. Norris, F. H., S. P. Stevens, B. Pfefferbaum, K. F. Wyche, and R. L. Pfefferbaum. 2008. Community resilience as a metaphor, theory, set of capacities, and strategy for disaster readiness. American Journal of Community Psychology 41:127-150. NRC (National Research Council). 2006. Facing Hazards and Disasters: Understanding Human Dimensions. Washington, DC: The National Academies Press.

OCR for page 91
Measuring Progress Toward Resilience 115 Peacock, W. G., ed. 2010. Advancing the Resilience of Coastal Localities: Developing, Implementing and Sustaining the Use of Coastal Resilience Indicators: A Final Report. Hazard Reduction and Recovery Center, Texas A&M University. Available at http://archone.tamu.edu/hrrc/Publications/researchreports/downloads/10- 02R_final_report_grant_NA07NOS4730147_with_cover.pdf. Peduzzi, P., H. Dao, C. Herold, and F. Mouton. 2009. Assessing global exposure and vulnerability towards natural hazards: The Disaster Risk Index. Natural Hazards and Earth System Sciences 9:1149-1159. Phillips, B. D., D. S. K. Thomas, A. Fothergill, and L. Blinn-Pike, eds. 2010. Social Vulnerability to Disasters. Boca Raton, FL: CRC Press. Prevention Institute. 2004. A Community Approach to Address Health Disparities: T*H*R*I*V*E: Toolkit for Health and Resilience in Vulnerable Environments. Available at http://minorityhealth.hhs.gov/assets/pdf/checked/THRIVE_FinalProjectReport_093004.p df. Rose, A., G. Oladosu, B. Lee, and G. Beeler-Asay. 2009. The economic impacts of the 2001 terrorist attacks on the World Trade Center: A computable general equilibrium analysis. Peace Economics, Peace Science, and Public Policy 15(2), Article 4. Saaty, T. L. 1988. Decision Making for Leaders: The Analytical Hierarchy Process for Decisions in a Complex World. Pittsburgh, PA: University of Pittsburgh Press. Sherrieb, K., F. Norris, and S. Galea. 2010. Measuring capacities for community resilience. Social Indicators Research 99(2):227-247. SPUR (San Francisco Planning and Urban Research Association). 2008. Defining What San Francisco Needs from Its Seismic Mitigation Policies. Available at http://www.spur.org/publications/library/report/defining-what-san-francisco-needs-its- seismic-mitigation-policies#disaster. START (National Consortium for the Study of Terrorism and Responses to Terrorism). 2011. Developing Community Resilience for Children and Families. Available at http://www.start.umd.edu/start/research/investigators/project.asp?id=30. Tuan, Y.-F., 2007. Space and Place: The Perspective of Experience. Minneapolis: University of Minnesota Press. UNDP (United Nations Development Program). 2004. Reducing Disaster Risk: A Challenge for Development. Available at http://www.grid.unep.ch/activities/earlywarning/DRI/. UNISDR (United Nations International Strategy for Disaster Reduction). 2007. Hyogo Framework for Action 2005-2015: Building the Resilience of Nations and Communities to Disaster. Available at http://www.unisdr.org/files/1037_hyogoframeworkforactionenglish.pdf. UNISDR. 2010. A Guide for Implementing the Hyogo Framework for Action by Local Stakeholders. Available at http://www.unisdr.org/files/13101_ImplementingtheHFA.pdf. UNISDR. 2011. Themes and Issues in Disaster Risk Reduction. Available at http://www.preventionweb.net/files/19646_themesandissuesindrrwithdefinitions.pdf. UNU (United Nations University). 2011. World Risk Report 2011. Berlin, Germany: Alliance Development Works. Available at http://www.ehs.unu.edu/file/get/9018.

OCR for page 91