Cover Image


View/Hide Left Panel

predict when and where their food will be available than in species that feed opportunistically.

In Chapter 13, Kenneth Catania reports on two natural but highly unusual feeding behaviors. First, Catania reviews the incredibly rapid and efficient hunting behavior of star-nosed moles. Using optimal foraging theory, he shows that these small predators are specialized for rapidly finding and eating small aquatic invertebrates. Their star-shaped “nose” evolved to help them in this task, as did a series of related specializations in the brain, including an expanded somatosensory cortex. Catania then turns to an aquatic snake that has evolved a fascinating trick for catching fish. It uses a tiny muscular contraction of its body to trigger a nearby fish’s escape response in such a way that the hapless fish tends to swim directly into the snake’s wide-open fangs. Even more remarkable, the snakes can anticipate the trajectory of the escape response, intercepting a fish before it gets away. Because this predictive ability is found even in naive snakes that have never caught (or missed catching) a fish, it seems to be innate (i.e., unlearned). Why did the fish retain their stereotyped escape response, given that the snakes can exploit it? The answer may be that snakes are relatively rare, and the escape response serves the fish well when dealing with most other threats.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement