but they have been pursued as stovepiped activities. A laser weapon needs to detect a potential target, the target must be identified, and an aim point must be selected and maintained. Additionally, as communication between sensors producing “input” about a situation and systems taking action (output) needs to be faster, there is a technological need to put these sensors and systems as close together as possible. The committee believes that there is significant synergy between these activities and that photonics technologies will be an integral part of this new integrated system capability.

Over the last decade, significant work has evolved on silicon photonics, to closely integrate optics and electronics in a cost-effective manner, as was discussed in the previous chapter, on communications. Most of this work has been driven by communications needs, but it will be an enabler for the defense arena as well. Optics is becoming integrated in defense systems other than optical systems, such as into microwave radars, using radio-frequency (RF) photonics. It is anticipated that more and more areas of defense “electronics” will become defense optoelectronics.


There is virtually no part of a modern defense system that is not impacted in some way by optics and photonics, even when the system is not optically based. Modern defense systems are migrating toward optically based imaging, remote sensing, communications, and weapons. This trend makes maintaining leadership in optics and photonics vital to maintaining the U.S. position in defense applications. Additional areas of impact include the following: precision laser machining, optical lithography for electronics, optical signal interconnects, solar power for remote energy needs, and generation of a stable timebase for the Global Positioning System (GPS). Even when the actual sensor is not optics-based, in many cases optics plays an important role, such as the migrating of RF photonics into microwave radar systems mentioned above.


There have been significant advances in optics and photonics for national defense both in components and in systems since the publication of Harnessing Light in 1998.4 Some of the key areas include surveillance, night vision, laser systems, fiber-optics systems, chemical and biological detection, and optical processing. One example of a significant advance in component technologies is laser diode efficiency, which has directly impacted the efficiency of laser systems. In addition, there has been significant progress in both laser power and available wavelengths


4 National Research Council. 1998. Harnessing Light.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement