2. How can the U.S. optics and photonics community develop a seamless integration of photonics and electronics components as a mainstream platform for low-cost fabrication and packaging of systems on a chip for communications, sensing, medical, energy, and defense applications?

In concert with meeting the fifth grand challenge, achieving this grand challenge would make it possible to stay on a Moore’s law-like path of exponential performance growth. The seamless integration of optics and photonics at the chip level has the potential to significantly increase speed and capacity for many applications that currently use only electronics, or that integrate electronics and photonics at a larger component level. Chip-level integration will reduce weight and increase speed while reducing cost, thus opening up a large set of future possibilities as devices become further miniaturized.

3. How can the U.S. military develop the required optical technologies to support platforms capable of wide-area surveillance, object identification and improved image resolution, high-bandwidth free-space communication, laser strike, and defense against missiles?

Optics and photonics technologies used synergistically for a laser strike fighter or a high-altitude platform can provide comprehensive knowledge over an area, the communications links to download that information, an ability to strike targets at the speed of light, and the ability to robustly defend against missile attack. Clearly this technological opportunity could act as a focal point for several of the areas in optics and photonics (such as camera development, high-powered lasers, free-space communication, and many more) in which the United States must be a leader in order to maintain national security.

4. How can U.S. energy stakeholders achieve cost parity across the nation’s electric grid for solar power versus new fossil-fuel-powered electric plants by the year 2020?

The impact on U.S. and world economies from being able to answer this question would be substantial. Imagine what could be done with a renewable energy source, with minimal environmental impact, that is more cost-effective than nonrenewable alternatives. Although this is an ambitious goal, the committee poses it as a grand challenge question, something requiring an extra effort to achieve. Today, it is not known how to achieve this cost parity with current solar cell technologies.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement