substantial research funding, as do Korea and Japan. However, the single most important threat to U.S. leadership, especially with respect to network equipment development and manufacture, is likely to come from China, where the government-sponsored Huawei ranks as number 1 or number 2 in global market share,114 followed closely by ZTE, another systems vendor from China. Already extremely innovative in its products, China is now focused on research and innovation. Its paper submissions to international optics journals and to the premier global optical communications conferences have increased substantially in the last 5 years.115 There is particularly strong research in Europe and recently also in Japan in the emerging silicon photonics platforms for networks and interconnects.

Given that labor-intensive industries will continue to migrate their manufacturing to low-labor-cost regions, it is imperative that the United States stay at the leading edge of optical technology at the component, platform, and system levels. This approach appears to have served the U.S. electronics industry well. To keep a substantial portion of the value chain in the United States, it will be important for U.S. enterprises to have the critically enabling intellectual property that provides a barrier of entry without financial compensation. To have that intellectual property, it is essential to be at the leading edge of enabling the fundamental and applied research. Suggested areas of focus on the component side include very high speed electronics and optical components, including modulators and detectors at operating rates of 400 Gb/s and 1 Tb/s; advanced signal processing to overcome transmission impairments for coherent systems; and on-chip integration that provides increased functionality while reducing size, power consumption, and cost. Such integrated chips also do not require the substantial manual assembly that is now being performed in low-labor-cost regions. In the systems and networks area, finding a new approach to cost-effectively achieve several-orders-of-magnitude long-haul and metropolitan distance transmission capacity and to rapidly get that technology to market will be critical in order for the United States to maintain a strong global leadership position. Such technology evolution will also underpin the increasing move to optics inside information processing that will be essential for the continued scaling of an information-driven economy. The successful development of an integrated platform technology, such as some version of silicon photonics that can service a broad range of applications and integration with electronics, could be a major enabler for U.S. economic impact.


114 Huawei. 2010. Milestones. Available at Accessed July 26, 2012.

115 Cao, J. 2012. A new journal in optics and photonics—Light: Science and Applications. Editorial. Light: Science and Applications 1:Online. Available at Accessed July 26, 2012.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement