proteins, and peptides and advances in spectrometric methods have enabled a better understanding of molecular-level biologic processes. Those types of tools are an integral part of EPA’s computational toxicology program and are being applied to the development of new approaches to assess and predict toxicity in vitro. Advances in biomonitoring, sensor technology, health tracking, and informatics are improving the understanding of individual exposures and associated health endpoints. If EPA is to continue this work, it will need to maintain and increase its expertise in such fields as toxicology, exposure science, epidemiology, molecular biology, information technology, bioinformatics, computer science, and statistical modeling.

Advances in remote sensing since the launch of Landsat 1 in 1972 are continuing to improve the understanding of contaminant sources, fate, and transport and the understanding and monitoring of landscape ecology and ecosystem services. Using remotely collected data effectively to gain information also requires advances in modeling of various components of the Earth’s biogeophysical systems, including improved techniques for data assimilation and modeling. As an example in the air-pollution arena, active sensors, such as satellite sensors and aircraft-mounted light detection and ranging sensors, can provide information on the vertical distribution of clouds and aerosols and can provide important spatial, temporal, and contextual information about the extent, duration, and transport paths of pollution. Remote sensing is also being used to monitor fugitive releases of methane, hazardous air pollutants, and volatile organic compounds from landfills and other diffuse or dispersed sources. What had been thought to be an excessively expensive monitoring challenge is proving financially and practically manageable.

Methods for identifying and quantifying chemicals, microorganisms, and microbial products in the environment continue to improve. For example, the most recent advances in the detection of microorganisms in water include quantitative polymerase chain reaction (PCR) methods, which can be designed for any microorganism of interest because they are highly specific and quantitative. In addition to updating water-quality standards and addressing health studies and swimmer surveys, EPA has begun to use PCR techniques to understand coastal pollution, address polluted sediments, decrease response time for detecting polluted waters, and improve protection of public health on beaches and coastlines. Such advances as the deployment of quantitative PCR require linking biology, mathematics, health, the environment, and policy to support substantial interdisciplinary research focused on problem-solving and systems thinking.

New tools and technologies are collecting larger, more diverse sets of data on increasing spatial and temporal scales. Knowledge and expertise in such fields as computer science, information technology, environmental modeling, and remote sensing are necessary to collect, manage, analyze, and model those datasets. One method for collecting information across larger geographic spaces and over longer periods is public engagement. For example, during massive online collaborations, participants can be invited to help to develop a new technology, carry out a design task, propose policy solutions, or capture, systematize, or



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement