Cosmic Rays and Cloud Nucleation
Jeffrey Pierce, Dalhousie University, Halifax, Nova Scotia

Evidence of a correlation between GCRs and climate via their influence on cloud cover has been debated, but insight into potential underlying physical mechanisms is providing a better understanding of the types of studies required to better quantify any impact. According to Jeffrey Pierce, there are two potential GCR-cloud-climate pathways:

1. GCRs enhance aerosol nucleation rates and cloud condensation nuclei concentrations through ionization of gases. These changes modify cloud formation, cloud amount, and subsequently, the shortwave radiation reaching the surface.

2. GCRs impact precipitation through the modification of near-cloud electrification with subsequent impact on the freezing of supercooled liquid droplets. Processes in this category could alter the global electrical circuit with potential but as yet unknown mechanisms.

Pierce noted that the first mechanism has been studied in far greater detail. International Satellite Cloud Climatology Project cloud analysis has suggested a 2 percent absolute change in cloud amount over the solar cycle, which corresponds to a 6 percent relative change.30 Although there is a 5-20 percent change in GCR-induced ionization in the troposphere over the solar cycle, this results (due to a number of dampening factors) in a smaller increase in nucleation rates, an even smaller increase in cloud condensation nuclei, and finally, a still smaller change in cloud amount. Thus it appears that the ion-aerosol clear-sky mechanism is too weak to explain the observed cloud changes, even with favorable assumptions for model inputs. Pierce asserted that a number of controlled experiments are necessary to better assess both the ion-aerosol hypothesis and the near-cloud hypothesis.31

_______________

30 K.S. Carslaw, R.G. Harrison, and J. Kirkby, Cosmic rays, clouds and climate, Science 298:1732-1737, 2002.

31 See also discussion by Daniel Baker, above.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement