ome does, but how the microbiome influences human health and disease, including through its interaction with diet. What we eat and drink influences the microbiome, with significant implications for human health and disease, and the microbiome in turn influences diet. All of this newfound knowledge about diet-microbiome-host dynamics is being used to develop probiotic and prebiotic food products intended to help build and maintain health. Indeed, probiotics are one of the fastest-growing sectors in the global functional food market. Yet, despite this early scientific and market progress, the field faces significant scientific and regulatory challenges. During the last session of the workshop, participants debated ways to move the science forward and drive continued industry investment in microbiome-related product development. Moderator Fergus Clydesdale, distinguished university professor in the Department of Food Science at the University of Massachusetts Amherst, initiated the open discussion by observing that the science of the microbiome is focused mostly on associations between the microbiome and disease, not health, and that most dietary interventions intended to have an impact on host biology via their influence on the microbiome (e.g., probiotics) are being studied for their potential to prevent disease, not promote health. However, current regulatory constraints on food claims prohibit communicating to consumers many of the effects that studies focused on disease prevention demonstrate. Participants debated opportunities for shifting the science by encouraging more research in healthy populations versus shifting the regulatory landscape to accommodate the science. Several suggestions were put forth for how to proceed down each path.

REFERENCES

Akaza, H., N. Miyanaga, N. Takashima, S. Naito, Y. Hirao, T. Tsukamoto, and M. Mori. 2002. Is daidzein non-metabolizer a high risk for prostate cancer? A case-controlled study of serum soybean isoflavone concentration. Japanese Journal of Clinical Oncology 32(8):296-300.

Alexander, V. N., V. Northrup, and M. J. Bizzarro. 2011. Antibiotic exposure in the newborn intensive care unit and the risk of necrotizing enterocolitis. Journal of Pediatrics 159(3):392-397.

Amar, J., C. Chabo, A. Waget, P. Klopp, C. Vachoux, L. G. Bermudez-Humaran, N. Smirnova, M. Berge, T. Sulpice, S. Lahtinen, A. Ouwehand, P. Langella, N. Rautonen, P. J. Sansonetti, and R. Burcelin. 2011. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: Molecular mechanisms and probiotic treatment. EMBO Molecular Medicine 3(9):559-572.

Arumugam, M., J. Raes, E. Pelletier, D. Le Paslier, T. Yamada, D. R. Mende, G. R. Fernandes, J. Tap, T. Bruls, J. M. Batto, M. Bertalan, N. Borruel, F. Casellas, L. Fernandez, L. Gautier, T. Hansen, M. Hattori, T. Hayashi, M. Kleerebezem, K. Kurokawa, M. Leclerc, F. Levenez, C. Manichanh, H. B. Nielsen, T. Nielsen, N. Pons, J. Poulain, J. Qin, T. Sicheritz-Ponten, S. Tims, D. Torrents, E. Ugarte, E. G. Zoetendal, J. Wang, F. Guarner, O. Pedersen, W. M. de Vos, S. Brunak, J. Dore, H. I. T. C. Meta,



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement