5

Perspectives on Corresponding Animal and Clinical Endpoints

Sharon Rosenzweig-Lipson of IVS Pharma Consulting, and session chair, began by posing several questions for consideration: Will corresponding endpoints be useful for predicting clinical efficacy? What is an animal model meant to predict and what is the corresponding endpoint intended to predict? For example, decreases in amyloid beta can be measured both in animals and in patients with Alzheimer’s disease. However, having this corresponding animal and clinical endpoint is not necessarily sufficient to make a prediction about the clinical efficacy of a potential therapeutic. Similarly, specific behavioral changes in animals may correspond to changes in humans, but these may, or may not, translate into a prediction of disease course. There is value to translation of clinical endpoints, she said, but it is important to understand what that value is.

ROLE OF MATCHING ENDPOINTS

Invited panelists used specific case examples to discuss the role of corresponding endpoints, and the impact of experimental parameters on corresponding endpoints and bidirectional translation. Neal Swerdlow described prepulse inhibition as an example of the ability to study the same endpoint in both an animal model and humans. Larry Steinman discussed experimental autoimmune encephalomyelitis (EAE) as an example of how differences in the way an animal model is tested can have profound differences on the findings. Michela Gallagher described how



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 45
5 Perspectives on Corresponding Animal and Clinical Endpoints Sharon Rosenzweig-Lipson of IVS Pharma Consulting, and session chair, began by posing several questions for consideration: Will corre- sponding endpoints be useful for predicting clinical efficacy? What is an animal model meant to predict and what is the corresponding endpoint intended to predict? For example, decreases in amyloid beta can be measured both in animals and in patients with Alzheimer’s disease. However, having this corresponding animal and clinical endpoint is not necessarily sufficient to make a prediction about the clinical efficacy of a potential therapeutic. Similarly, specific behavioral changes in animals may correspond to changes in humans, but these may, or may not, trans- late into a prediction of disease course. There is value to translation of clinical endpoints, she said, but it is important to understand what that value is. ROLE OF MATCHING ENDPOINTS Invited panelists used specific case examples to discuss the role of corresponding endpoints, and the impact of experimental parameters on corresponding endpoints and bidirectional translation. Neal Swerdlow described prepulse inhibition as an example of the ability to study the same endpoint in both an animal model and humans. Larry Steinman dis- cussed experimental autoimmune encephalomyelitis (EAE) as an exam- ple of how differences in the way an animal model is tested can have profound differences on the findings. Michela Gallagher described how 45

OCR for page 45
46 ANIMAL MODELS FOR NERVOUS SYSTEM DISORDERS neuroimaging tools have demonstrated that functional components of hippocampal circuits are very similar between animal models and humans. PREPULSE INHIBITION Neal Swerdlow, professor in the department of psychiatry at the Uni- versity of California, San Diego, used the prepulse inhibition assay as a discussion case for the role of corresponding endpoints. Prepulse inhibi- tion is defined as the automatic inhibition of the startle reflex, the con- traction of the facial and skeletal musculature in response to an intense, abrupt stimulus, when the startling stimulus is preceded by a weak lead stimulus or prepulse. A primary measure of the startle reflex is move- ment of the orbicularis oculi muscle, or eye blink, often determined using surface electrodes attached to the muscles around the eye. In the labora- tory, prepulse inhibition is an operational measure of sensorimotor inhi- bition, the inhibition of a motor response by a weak sensory event. Prepulse inhibition is markedly diminished in a number of different neuropsychiatric disorders, including schizophrenia, Huntington’s dis- ease, Tourette’s syndrome, Asperger’s syndrome, fragile X syndrome, and obsessive-compulsive disorder (reviewed in Braff et al., 2001). In schizophrenia, for example, patients show deficits in prepulse inhibition regardless of whether the startling stimulus is a tactile (e.g., an air puff) or acoustic stimulus. Although this phenotype is not specific to schizo- phrenia, it is robust and replicable. Commonalities and Differences From an experimental perspective, the stimulus delivery and re- sponse acquisition hardware and software that are used for prepulse inhi- bition testing are very similar across species. The most obvious difference in testing is physical restraint; human subjects voluntarily sit in a chair during testing while mice are enclosed in a tube. The response characteristics are strikingly similar across species, in- cluding sensitivity to stimulus parameters (e.g., prepulse, intensity, and interval), cross-modal inhibition, habituation, and latency facilitation. That is primarily because the startle reflex involves neural circuitry that is common across all mammalian species, Swerdlow explained (Swerdlow et al., 1999, 2008). There are some obvious, although rela-

OCR for page 45
CORRESPONDING ANIMAL AND CLINICAL ENDPOINTS 47 tively subtle, differences in response characteristics; for example, axons are longer in humans and therefore reflex latencies tend to be longer. Waveform morphology can differ depending on whether the electrodes are collecting a whole-body response (as in the mouse model) versus a single muscle group (eye blink in humans). There is also evidence that similar biological substrates are involved in regulating prepulse inhibition across species. There is interesting sex- ual dimorphism, he noted, with males tending to be more inhibited than females across species (mice, rats, and humans). Prepulse inhibition is also a highly heritable phenotype. Predictive Models Some of the practical uses of prepulse inhibition testing relate to its predictive validity of antipsychotic drug effects. Prepulse inhibition is disrupted by dopamine agonists such as apomorphine. Swerdlow de- scribed early work that he and others conducted which showed that ad- ministration of the typical antipsychotic, haloperidol, or the atypical antipsychotic, clozapine, produced dose-dependent normalization of prepulse inhibition in apomorphine-treated animals (Swerdlow and Geyer, 1993). This ability of a compound to reverse the disruptive effects of a dopamine agonist on prepulse inhibition in an animal has been used as a predictive model of antipsychotic efficacy in humans. While establishment of these cross-species comparable endpoints has created robust systems for predicting clinical efficacy of antipsychotic therapies for schizophrenia, the larger picture is that the system facilitates the identification of “me-too” drugs, Swerdlow said. New compounds may have a different profile but drugs identified in using this system are all basically antipsychotics that affect positive symptoms. Whether drug effects on prepulse inhibition have corresponding end- points across species is dependent on many variables (e.g., species and strain, stimulus parameters, drug dose and route of administration, con- comitant drug effects on startle magnitude, subpopulations). Most of these, Swerdlow explained, can be controlled or addressed post hoc to ensure matching endpoints. For example, Long-Evans and Sprague-Dawley outbred rats have very different prepulse inhibition profiles. While Long-Evans rats show only slightly less prepulse inhibition than Sprague-Dawley rats, their response to a dopamine agonist is dramatically different. At shorter

OCR for page 45
48 ANIMAL MODELS FOR NERVOUS SYSTEM DISORDERS prepulse intervals, Long-Evans animals show a robust potentiation of prepulse inhibition, while Sprague-Dawley animals show a profound disruption (Swerdlow et al., 2004). This is a highly reliable strain differ- ence that was first viewed as noise, but is now known to be related to differences in biology. Importantly, studying the biology of this differ- ence has led to much useful information that Swerdlow pointed out would not be known if only one standardized strain of animal was used. Construct Models There are corresponding endpoints across species in terms of the neural circuitry. The primary startle circuit is fairly constant, with more variability and interesting differences in the downstream circuitry, Swerdlow explained. Researchers have shown that activation of basal ganglia and cortical regions are relevant for regulating prepulse inhibi- tion in rodents. Correspondingly, a number of human disorders that dis- play deficits in prepulse inhibition have identifiable abnormalities within portions of the basal ganglia or limbic cortical circuitry. In other words, the human anatomy maps well to the rat anatomy of circuit regulation. A number of developmental animal models will produce a deficit in prepulse inhibition, such as the neonatal ventral hippocampal lesion model. As one example of construct validity of these models, these defi- cits can be corrected in a dose-dependent manner with clozapine. This endpoint correlates well to the human condition, where control subjects display about half as much prepulse inhibition compared to patients with schizophrenia, a deficit that can be normalized substantially by clozapine (Kumari et al., 1999). Swerdlow also described corresponding endpoints relative to disease gene effects on prepulse inhibition across species. Pa- tients with Huntington’s disease, for example, show profound deficits in prepulse inhibition (Swerdlow et al., 1995), a phenomenon that has been reproduced in a transgenic mouse model of the disease (Carter et al., 1999). The Role of Corresponding Endpoints In summary, the conditions (e.g., eliciting stimuli, response acquisi- tion) for studying startle and prepulse inhibition across species are nearly identical (with the obvious difference of physical restraint of animals);

OCR for page 45
CORRESPONDING ANIMAL AND CLINICAL ENDPOINTS 49 response characteristics are comparable; and there is evidence for similar biological substrates across species. The prepulse inhibition assay has predictive validity in developing and testing the activity of antipsychotics and for developing typical and atypical antipsychotics. That said, the anatomy, neural circuitry, and neural substrates of schizophrenia are very complex. While drugs can be developed to control some of the simpler symptoms of this disorder it is less clear that these predictive models will be helpful in developing interventions that offer long-term benefit in terms of function, interventions that may act through a completely different mechanism. The diffuse neuropathology in schiz- ophrenia may reflect events very early in development, years or decades before patients seek medical intervention (Halliday, 2001). Swerdlow suggested that even a “perfectly corresponding” animal model cannot generate a therapeutic (drug, gene, protein, etc.) that will substantially restore healthy neural function to patients with schizophrenia, addressing the variable web of absent and misguided neural connections that have developed over the course of a lifetime. In developing therapeutics for schizophrenia, our “endpoint” should reflect these limits, he concluded. EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS The EAE animal model was first described in 1933 by Rivers and colleagues while they were seeking to understand how some viral infec- tions lead to neurologic reactions. Nearly 80 years later, EAE remains “one of the most enduring models of human disease,” said Larry Steinman, professor in the departments of Neurological Sciences and Pediatrics at Stanford University (see Steinman, 2003). EAE is not a model of multiple sclerosis, Steinman stressed, but there are similarities, and EAE is often used for the study of demye- lination and examination of potential therapeutics for multiple sclerosis. Steinman shared two case examples of how experimental parameters can impact outcome; one is highlighted here. Steinman shared the study of tumor necrosis factor (TNF) blockers for treatment of autoimmune diseases. One approach does not suit all autoimmiune diseases, he noted. It is known that blockade of TNF is ef- fective in treating about 70 percent of patients with rheumatologic dis- eases (e.g., rheumatoid arthritis, psoriasis, inflammatory bowel disease), while it is not effective for treatment of multiple sclerosis and can even

OCR for page 45
50 ANIMAL MODELS FOR NERVOUS SYSTEM DISORDERS exacerbate the disease in some patients (Steinman et al., 2012). Early research in this area, however, illustrates the impact of experimental de- sign on outcomes. Based on data showing an association between elevated levels of TNF in spinal fluid and disease progression in multiple sclerosis (e.g., Sharief and Hentges, 1991), it was thought that TNF blockade might have therapeutic value. In pursuit of this hypothesis, two groups pub- lished studies with very different conclusions. Feldmann and colleagues demonstrated control of established EAE in mice by inhibition of TNF using a monoclonal antibody (Baker et al., 1994). Another group, howev- er, induced EAE in animals with a disruption in the TNF gene, suggest- ing that TNF was not essential for development of demyelinating lesions. They also found that TNF treatment reduced the severity of EAE in the animals (Liu et al., 1998). Steinman explained that a potentially critical difference between the experiments was that the Feldman group used complete Freund’s adju- vant in induction of EAE while the Bernard group used adoptive transfer. As it turns out, Freund’s adjuvant induces production of TNF-alpha and causes leakage of the blood-brain barrier (Müssener et al., 1995; Rabchevsky et al., 1999). Steinman suggested that what Feldmann and colleagues may have seen was an amelioration of EAE due to the TNF- enhancing effect of the complete Freund’s adjuvant. Both of these studies were “EAE experiments,” Steinman pointed out; however, the results were completely opposite. Around the same time, clinical studies of TNF blockade in humans with multiple sclerosis also showed exacerbation of disease instead of reduction of lesions (Lenercept, 1999; van Oosten et al., 1996). Steinman added that the TNF antagonist, Enbrel, now carries a label warning about the increased risk of demyelination. Steinman concluded that an appropriate animal model should have a strong link to human disease. It is also important to avoid inclusion of any unnecessary steps or components, such as Freund’s adjuvant. EAE can be a good model system. However, there are many different EAE models and Steinman noted that more than 10,000 publications on EAE are listed in PubMed. Clinical Trials The bigger issue, Steinman suggested, is not animal models, but how to facilitate faster, less expensive trials in humans. Animal models will

OCR for page 45
CORRESPONDING ANIMAL AND CLINICAL ENDPOINTS 51 always be imperfect, Steinman opined. Even successful use of a model cannot predict all possible outcomes, such as the risk of PML with natalizumab treatment. Steinman went on to state that human clinical trials will ultimately guide therapy. He added that many approved drugs could be repurposed, but finding someone to support and conduct the trials can be challenging. Koroshetz and another participant noted that the National Institute of Neurological Disorders and Stroke has a Net- work of Excellence in Neuroscience Clinical Trials that was set up to facilitate testing of new therapies in patients with neurological disorders. Academic investigators, industry, advocacy groups, and others with a novel therapeutic can apply to conduct a study within the network. 1 IMPROVING BIDIRECTIONAL TRANSLATION FOR NERVOUS SYSTEM DISORDERS Expanding on the previous discussion by Swerdlow, Michela Gallagher, professor of psychology and neuroscience at Johns Hopkins University, agreed that prepulse inhibition is a good example of corre- sponding endpoints across species and can facilitate the study of neuronal circuitry. There are new in vivo imaging tools that provide information about the functional position of networks in the normal state and in dis- ease states. Gallagher described her work with an aged rat model of memory loss. Gallagher noted that although this is referred to as an animal model of aging, it is important to understand that it is not a surrogate of aging like some other models; it actually is aging. Studying the hippocampal circuitry using this model predicts circuit overactivity and its localiza- tion. Gallagher noted that in this model, there is no neuronal loss and the numbers of synapses are maintained in old animals with memory loss. The hippocampal circuit most affected in terms of integrity of synaptic connections is the entorhinal cortex layer 2, which sends input to the den- tate gyrus and CA3. Electrophysiological recording experiments showed that CA3 pyramidal neurons have elevated firing rates in this animal model. In animals with memory loss, those neurons fail to encode new information (Wilson et al., 2003). In this condition, overactivity is a sign of dysfunction. In the hippocampus of an aged brain, it is predicted that these neu- rons encode less distinctive representations when animals experience 1 See http://www.ninds.nih.gov/research/clinical_research/NEXT-flyer.htm.

OCR for page 45
52 ANIMAL MODELS FOR NERVOUS SYSTEM DISORDERS overlapping elements, a property referred to as pattern separation or the encoding of a new environment so it has little overlapping property. Be- cause the majority of the synaptic inputs to CA3 neurons come from auto-associative networks,2 this elevated activity drives a complementary process referred to as pattern completion. Cognitively, Gallagher ex- plained, there is a shift from pattern separation to pattern completion, which does not encode something new, but rather retrieves something old. This was observed empirically in aged animals with memory loss by recording an ensemble of neurons in the CA3 circuit. The recordings show spatially localized neuronal firing in a familiar environment. When young animals are moved to a new environment, they exhibit the phe- nomenon of pattern separation, either in terms of firing rates or neurons involved in that representation. This distinguishes one episode and envi- ronment distinctively from another. In aged rats with memory loss that are presented with a new environment, there is a failure of CA3 neurons to rapidly encode a new representation. Aged rats with normal spatial memory have CA3 neurons that encode new information comparable to young animals. Gallagher explained that there are modalities for testing people that can also capture this kind of pattern-separation/pattern-completion pro- cess. One example is running a recognition task where patients identify a visual stimulus as old, new, or similar but not identical to something al- ready seen, while undergoing functional MRI (Bakker et al., 2008). A correct response of “similar” reflects pattern-separation ability, while an incorrect response that the stimulus is “old” indicates pattern completion. Using this approach, Bakker et al. (2012) provide evidence for the role for the human dentate gyrus/CA3 region in pattern separation. High- resolution neuroimaging tools have shown that hippocampal over- activity in patients with mild cognitive impairment is isolated to the hu- man dentate gyrus/CA3 region (Yassa et al., 2010). 2 Autoassociative neural networks are feedforward nets trained to produce an approximation of the identity mapping between network inputs and outputs using backpropagation or similar learning procedures (Kramer, 1992).

OCR for page 45
CORRESPONDING ANIMAL AND CLINICAL ENDPOINTS 53 Practical Application In the aged animal model, the functional contribution of hippocampal overactivity is studied further by using a variety of treatments to try to lower activity (e.g., viral transfection of an inhibitory peptide, drugs). When overactivity in the CA3 region was reduced, the performance of the network improved, Gallagher explained. In the process, it was found that an atypical antiepileptic, levetiracetam, could restore behavioral per- formance and network function in aged animals with memory loss. Levetiracetam preferentially reduces the activity of neurons that are in burst-firing mode, and when old animals have increased firing rates, they generate more spikes per burst. Gallagher and colleagues took this finding forward into a human study and found that a subclinical dose of levetiracetam reduced hippo- campal overactivation and improved task-dependent memory perfor- mance in patients with mild cognitive impairment (Bakker et al., 2012). Therefore, it would appear that hippocampal overactivity is a condition of network dysfunction, not a compensatory beneficial recruitment of resources in the hippocampus. Further experiments are needed, Gallagher said, and they will be complex. Analysis of data sets from the Alzherimer’s Disease Neuro- imaging Initiative (ADNI) and other studies indicate that the degree of increased activation of the hippocampus predicts subsequent cognitive decline, and can predict conversion to Alzheimer’s disease (Putcha et al., 2011). An unanswered question is whether there is any correlation or causal relationship between the loss of the layer 2 entorhinal cortex neu- rons that occurs in prodromal Alzheimer’s disease and hippocampal overactivation, as these neurons form the input pathway to the dentate gyrus and the CA3 region. Analysis of ADNI data on cortical thickness of the entorhinal cortex shows that during mild cognitive impairment there is ongoing thinning of the entorhinal cortex that might represent the neurodegeneration that has been seen in autopsy. In conclusion, Gallagher noted that this is just one example of how neuroimaging tools have allowed us to understand that the functional components of these circuits are very similar in their core functions across animal models and humans.

OCR for page 45