National Academies Press: OpenBook
« Previous: Chapter 5 - Design Examples
Page 132
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2010. LRFD Design and Construction of Shallow Foundations for Highway Bridge Structures. Washington, DC: The National Academies Press. doi: 10.17226/14381.
×
Page 132
Page 133
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2010. LRFD Design and Construction of Shallow Foundations for Highway Bridge Structures. Washington, DC: The National Academies Press. doi: 10.17226/14381.
×
Page 133
Page 134
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2010. LRFD Design and Construction of Shallow Foundations for Highway Bridge Structures. Washington, DC: The National Academies Press. doi: 10.17226/14381.
×
Page 134
Page 135
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2010. LRFD Design and Construction of Shallow Foundations for Highway Bridge Structures. Washington, DC: The National Academies Press. doi: 10.17226/14381.
×
Page 135
Page 136
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2010. LRFD Design and Construction of Shallow Foundations for Highway Bridge Structures. Washington, DC: The National Academies Press. doi: 10.17226/14381.
×
Page 136
Page 137
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2010. LRFD Design and Construction of Shallow Foundations for Highway Bridge Structures. Washington, DC: The National Academies Press. doi: 10.17226/14381.
×
Page 137
Page 138
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2010. LRFD Design and Construction of Shallow Foundations for Highway Bridge Structures. Washington, DC: The National Academies Press. doi: 10.17226/14381.
×
Page 138

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

132 AASHTO (1994). AASHTO LRFD Bridge Design Specifications, SI units, 1st ed., AASHTO, Washington, DC. AASHTO (1997). 1997 Interim Revisions to the Standard Specifications for Highway Bridges, 16th ed., 1996. AASHTO, DC. AASHTO (2001). 2001 Interim AASHTO LRFD Bridge Design Specifica- tions, 2nd ed., 1998. AASHTO, Washington, DC. AASHTO (2006). Interim Revisions to AASHTO LRFD Bridge Design Specifications, 3rd ed., 2004. AASHTO, Washington, DC. AASHTO (2007). AASHTO LRFD Bridge Design Specifications, 4th ed., AASHTO, Washington, DC. AASHTO (2008). Interim Revisions to AASHTO LRFD Bridge Design Specifications, 4th ed., 2007. AASHTO, Washington, DC. AIJ (2002). Recommendations for Limit State Design of Buildings. Archi- tectural Institute of Japan (in Japanese). Allen, T. M. (2005). Development of Geotechnical Resistance Factors and Downdrag Load Factors for LRFD Foundation Strength Limit State Design, Publication No. FHWA-NHI-05-052, Federal Highway Administration, Washington, DC, 41 pp. Amatya, S., Paikowsky, S. G., Lesny, K., and Kisse, A. (2009). “Uncer- tainties in the Bearing Capacity of Shallow Foundations and the Factor Nγ Using an Extensive Database.” Proc. GI Conference Inter- national Foundation Congress & Equipment Expo 2009 (IFCEE), ASCE GSP No. 186, Orlando, FL, March 15–19, 2009, 403–410. ARMY EM 1110-1-2908 (1994). Engineering and Design—Rock Foun- dations, Dept. of the Army, U.S. Army Corps of Engineers, Wash- ington, DC. Ayyub, B., and Assakkaf, I. (1999). LRFD Rules for Naval Surface Ship Structures: Reliability-Based Load and Resistance Factor Design Rules. Naval Surface Warfare Center, Carderock Division, U.S. Navy, West Bethesda, MD. Ayyub, B., Assakkaf, I., and Atua, K. (2000). “Reliability-Based Load and Resistance Factor Design (LRFD) of Hull Girders for Surface Ships.” Naval Engineers Journal, Vol. 112, No. 4, July, 279–296. Barker, R. M., Duncan, J. M., Rojiani, K. B., Ooi, P. S. K., Tan, C. K., and Kim, S. G. (1991). NCHRP Report 343: Manuals for the Design of Bridge Foundations. Transportation Research Board, National Research Council, Washington, DC. Barton, N. R., Lien, R., and Lunde, J. (1974). “Engineering Classification of Rockmasses for the Design of Tunnel Support.” Rock Mechanics, May, 189–236. Becker, D. E. (1996). “Eighteenth Canadian Geotechnical Colloquium: Limit State Design for Foundations. Part II. Development for the National Building Code of Canada.” Canadian Geotechnical Journal, Vol. 33, No. 6, 984–1007. Becker, D. E. (2003). “Limit States Foundation Design Code Develop- ment in Canada.” Proc. International Workshop on Limit State Design in Geotechnical Engineering Practice (LSD2003), 37–38. (Full paper on CD-ROM, World Scientific.) Bell, A. L. (1915). “Lateral Pressure and Resistance of Clay, and the Sup- porting Power of Clay Foundations.” Minutes of Proc. of the Institu- tion of Civil Engineers, 199, January 12, 233–336. Bienen, B., Byrne, B. W., Houlsby, G. T., and Cassidy, M. J. (2006). “In- vestigating Six-Degree-of-Freedom Loading of Shallow Foundations on Sand.” Géotechnique, Vol. 56, No. 6, 367–379. Bieniawski, Z. T. (1973). “Engineering Classification of Jointed Rock Masses.” Transactions of the South African Institute of Civil Engi- neers, Vol. 15, No. 12, 335–344. Bieniawski, Z. T. (1974). “Geomechanics Classification of Rock Masses and Its Application in Tunnelling.” Proc. 3rd International Congress of the International Society for Rock Mechanics, Vol. 2, Part A, Denver, CO, 27–32. Bieniawski, Z. T. (1976). “Rock Mass Classifications in Rock Engineer- ing.” Proc. Symposium on Exploration for Rock Engineering, Balkema, Cape Town, 76–106. Bieniawski, Z. T. (1978). “Determining Rock Mass Deformability: Ex- perience from Case Histories.” Int. Journal Rock Mechanics Min. Sci. and Geomech., Abstract, Vol. 15, No. 5, 237–248. Bieniawski, Z. T. (1979). “The Geomechanics Classification in Rock En- gineering Classifications.” Proc. 4th Int. Congr. On Rock Mech., Vol. 2, International Society for Rock Mechanics (ISRM), Montreux, Sep- tember 2–8, 1979, 41–48. Bieniawski, Z. T. (1974). “Geomechanics Classification of Rock Masses and its Application in Tunnelling.” Proc. 3rd International Congress of the International Society for Rock Mechanics, Vol. 2, part A, Den- ver, CO, pp. 27–32. Bieniawski, Z. T. (1989). Engineering Rock Mass Classification. Wiley, New York. Bishoni, B. L. (1968). “Bearing Capacity of a Closely Jointed Rock.” Ph.D. Dissertation, Georgia Institute of Technology, 120 p. Bolton, M. D., and Lau, C. K. (1993). “Vertical Bearing Capacity for Cir- cular and Strip Footings on Mohr-Coloumb Soil.” Canadian Geo- technical Journal, Vol. 30, No. 6, 1024–1033. Bowles, J. E. (1996). Foundation Analysis and Design, 5th ed, McGraw- Hill Inc., New York. Brady, B. H. G., and Brown, E. T. (1985). Rock Mechanics for Under- ground Mining. Chapman & Hall, London. Briaud, J. L., and Gibbens, R. (1997). Large-Scale Load Tests and Data- base of Spread Footings on Sand, FHWA-RD-97-068. FHWA, U.S. DOT, Washington, DC, 228 pp. References

133 Brinch Hansen, J. (1961). “A General Formula for Bearing Capacity.” Akademiet for de Tekniske Videnskaber, Geoteknisk Institut, Bul- lentin No. 11, Copenhagen, 38–46. Brinch Hansen, J. (1970). “A Revised and Extended Formula for Bear- ing Capacity.” Akademiet for de Tekniske Videnskaber, Geoteknisk Institut, Bullentin No. 28, Copenhagen, 5–11. Brook, N., and Dharmaratne, P. G. R. (1985). “Simplified Rock Mass Rating System for Mine Tunnel Support.” T. I. Min. Metall. A 94, 148–154. Buisman, A. S. K. (1940). “Grondmechanica.” In Toegepaste Mechan- ica, Deel IV (ed. Klopper, J.), Delft, The Netherlands (in Dutch). Butterfield, R. (1993). “A New Approach to Safety Factors for Shallow Foundations: Load Combination Factors as a Basis for Risk Assess- ment.” In B. O. Skipp, ed., Risk and Reliability in Ground Engineer- ing, Thomas Telford, London, 112–125. Butterfield, R., Houlsby, G. T., and Gottardi, G. (1996). “Standardized Sign Conventions and Notation for Generally Loaded Founda- tions.” Géotechnique, Vol. 47, No. 5, 1051–1054. Butterfield, R., and Ticof, J. (1979). “Discussion: Design Parameters for Granular Soils.” Proc., 7th European Conference on Soil Mechanics and Foundation Engineering, Vol. 4, Brighton, UK, 259–262. Byrne, B. W., and Houlsby, G. T. (2005). “Investigating 6 Degree-of- Freedom Loading on Shallow Foundations.” In S. Gouvernc and M. Cassidy, eds., Proceedings of the First International Symposium on Frontiers in Offshore Geotechnics, Taylor & Francis Group, London, 477–482. Canadian Geotechnical Society (2006). Canadian Foundation Engineer- ing Manual, 4th ed., 488 pp. Caquot, A., and Kérisel, J. (1953). “Sur le Terme de Surface dans le Cal- cul des Foundations en Milieu Pulvérulent.” Proc., 3rd Int. Conf. on Soil Mechanics and Foundation Engineering, Vol. I, Zürich, 336–337. Carder, D. R., Pocock, R. G. and Murray, R. T. (1977). “Experimental Retaining Wall Facility—Lateral Stress Measurements with Sand Backfill.” Transport and Road Research Laboratory Report No. LR 766, Crowthorne, Berkshire, UK. Carter, J. P., and F. H. Kulhawy (1988). Analysis and Design of Founda- tions Socketed into Rock. Report No. EL-5918. Empire State Electric Engineering Research Corporation and Electric Power Research Institute, New York, 158. Casagrande, A. (1948). “Classification and Identification of Soils.” Trans- actions of the American Society of Civil Engineers, Vol. 113, 901–930. CEN (2004). prEN 1997-1 Geotechnical Design—General Rules. Euro- pean Committee for Standardization. Chen, W. F. (1975). “Limit Analysis and Soil Plasticity.” Developments in Geotechnical Engineering 7, Elsevier, Amsterdam. Cheney, R. S., and Chassie, R. G. (1982). Soils and Foundations Work- shop Manual, FHWA-NHI-88-009. FHWA, U.S. DOT, Washington, DC, 338 pp. Clough, G. W., and Duncan, J. M. (1991). “Earth Pressures.” In Foun- dation Engineering Handbook, 2nd ed., H-Y Fang, ed., Van Nostrand Reinhold, New York. Coates, D. F., and Patching, T. H. (1968) “A Recommended Rock Clas- sification for Rock Mechanics Purposes.” CIM Bull. (October), 1195–1197. Cornell, C. (1969). “A Probability-Based Structural Code.” Journal of American Conc. Institute, Vol. 66, No. 12, 974–985. Cummings, R. A., Kendorski, F. S., and Bieniawski, Z. T. (1982). Caving Rock Mass Classification and Support Estimation. U.S. Bureau of Mines Contract Report #J0100103. Engineers International Inc., Chicago. D’Appolonia and the University of Michigan (2004). Final Report for NCHRP Project 12-55, Load and Resistance Factors for Earth Pres- sures on Bridge Substructures and Retaining Walls. (Unpublished document.) Das, B. M. (1981). “Bearing Capacity of Eccentrically Loaded Surface Footings on Sand.” Soils and Foundations, Vol. 21, No. 1, 115–119. De Beer, E. E. (1967). “Proefondervindelijke bijdrage tot de studie van het gransdragvermogen van zand onder funderingen op staal; Bepaling von der vormfactor sb.” Annales des Travaux Publics de Belgique, 68, No. 6, 481–506; 69, No. 1, 41–88; No. 4, 321–360; No. 5, 395–442; No. 6, pp. 495–522. De Beer, E. E. (1970). “Experimental Determination of the Shape Fac- tors and the Bearing Capacity Factors of Sand.” Géotechnique, 20, No. 4, 387–411. De Beer, E. E., and Ladanyi, B. (1961). “Etude Expérimentale de la Ca- pacité Protante du Sable sous des Fondations Circulaires Établies en Surface.” Proc., 5th Int. Conf. on Soil Mechanics and Foundation Engineering, Paris, Vol. 1, 577–581. Deere, D. U. (1968). “Geological Considerations.” In Rock Mechanics in Engineering Practice, R. G. Stagg and D. C. Zienkiewicz, eds., Wiley, New York, 1–20. Deere, D. U., and Miller, R. P. (1966). Engineering Classification and Index Properties for Intact Rock, Technical Report No. AFWL-TR- 65-116. Air Force Weapons Lab, Kirtland Air Force Base, New Mexico. Deere, D. U., and Deere, D. W. (1988). The Rock Quality Designation (RQD) Index in Practice, Rock Classification Systems for Engineer- ing Purposes, ASTM STP 984, American Society for Testing and Materials, Philadelphia, 91–101. DEGEBO Deutsche Forschungsgesellschaft für Boden-mechanik DIN EN 1997-1 (2008). Geotechnical Design, Part I: General Rules. Beuta-Verlag, Berlin. DIN 4017 (2006). Berechnung des Grundbruchwiderstands von Flach- gründungen. Normenausschuss Bauwesen (NABau), Deutsches Institut für Normung e. V., Berlin. Döerken, W. (1969). Der Einfluss der Aussermittigkeit auf die Grund- bruchlast lotrecht beanspruchter Oberflaechengruendungen auf nichtbindigen Boeden, Mitteilungen aus dem Institut fuer Verkehrswasserbau, Grundbau und Bodenmechanik der Technis- chen Hochschule Aachen, Heft 44. Douglas, K. J. and Mostyn, G. (1999). “Strength of Large Rock Masses— Field Verification.” In Proc. 37th U.S. Rock Mechanics Symposium, Vail, CO, June 6–9, 1, 271–276. Duncan, J. M. and Seed, R. B. (1986). “Compaction-Induced Earth Pres- sures under K0–Conditions.” Journal of Geotechnical Engineering, Vol. 112, No. 1, 1–22. Eastwood, W. (1955). “The Bearing Capacity of Eccentrically Loaded Foundations on Sandy Soils.” The Structural Engineer, Vol. 33, No. 1, 181–187. Edelbro, C. (2004). “Evaluation of Rock Mass Strength Criteria.” Licen- tiate thesis, Lulea University of Technology, Department of Civil and Mining Engineering, Division of Rock Mechanics, Sweden. Ellingwood, B., Galambos, T., MacGregor, J., and Cornell C. (1980). Development of a Probability-Based Load Criterion for American National A58. National Bureau of Standards Publication 577, Washington, DC. Ellingwood, B., MacGregor, J. G., Galanbos, T. V., and Cornell, C. A. (1982). “Probability Based Load Criteria: Load Factors and Load Combinations.” Journal of the Structural Division, Vol. 108, No. 5, 978–997. Eurocode 7 (EC7) (2005) (DIN EN 1997-1). Geotechnical Design, Part I: General Rules. Deutsches Institut für Normung e.V., Berlin. FHWA (2006). Soils and Foundations Workshop—Reference Manual Volume 2, FHWA-NHI-06-089. Washington, DC.

134 Foik, G. (1984). Die Tragfähigkeit überwiegend horizontal beanspruchter Fundamente auf dicht gelagertem Sand. Mitteilungen aus dem Fachgebiet Grundbau und Bodenmechanik, Universität— Gesamthochschule—Essen, Heft 8. Franklin J. A. and Dusseault, M. (1989). Rock Engineering. McGraw Hill, Inc., New York. Franklin, J. A. and Gruspier, J. E. (1983). Evaluation of Shales for Con- struction Projects, Ministry of Transportation and Communica- tions, Ontario, Research and Development Branch, 98 pp. Galambos, T., and Ravindra, M. (1978). “Properties of Steel for Use in LRFD.” Journal of Structural Engineering, Vol. 104, No. 9, 1459–1468. Gifford, D., Kraemer, S., Wheeler, J., and McKown, A. (1987). Spread Footings for Highway Bridges, FHWA/RD-86/185. FHWA, U.S. DOT, McLean, VA, October, 229 pp. Giraudet, P. (1965). “Recherches Experimentales sur les Fondations Soumises a des Efforts Inclines ou Excentres.” Annales des Ponts et Chaussees, Vol. 3, 168–193. Goel, R. K., Jethwa, J. L. and Paithankar, A. G. (1995). “Correlation Be- tween Barton’s Q and Bieniawski’s RMR—A New Approach.” Technical Note, Int. j. Rock Mech. Min., Vol. 33, No. 2, 179–181. Goodman, R. E. (1980). Introduction to Rock Mechanics. Wiley, New York, 478 pp. Goodman, R. E. (1989). Introduction to Rock Mechanics, 2nd ed. Wiley, New York. Gottardi, G. (1992). Modellazione del Comportamento di Fondazoni Superficiali su Sabbia Soggette a Diverse Condizioni di Carico, Dot- torato di ricerca in ingegneria geotecnica, Instituto di Costruzioni Marittime e di Geotecnica, Universita di Padova. Gottardi, G., and Butterfield, R. (1993). “On the Bearing Capacity of Surface Footings on Sand under General Planar Loads.” Soils and Foundations, Vol. 33, No. 3, 68–79. Gottardi, G., and Butterfield, R. (1995). “The Displacement of a Model Rigid Surface Footing on Dense Sand under General Planar Load- ing.” Soils and Foundations, Vol. 35, No. 3, 71–82. Gudehus, G. (1981). Bodenmechanik. Ferdinand Enke Verlag, Stuttgart Hasofer, A., and Lind, N. (1974). “Exact and Invariant Second-Moment Code Format.” Journal of the Engineering Mechanics Division, Vol. 100, No. 1, 111–121. Hatanaka, M., and Uchida, A. (1996). “Empirical Correlation between Penetration Resistance and Internal Friction Angle of Sandy Soil.” Soils and Foundations, Vol. 36, No. 4, 1–10. Haubrichs, K. (1993). Widerstand eines dicht gelagerten Sandes gegen Beanspruchungen infolge ausmittig-schraeg oder exzentrisch be- lasteter starrer Einzelfundamente. Mitteilungen aus dem Fachgebiet Grundbau und Bodenmechanik der Universitaet Essen, Heft 18, Ed. Prof. Dr.-Ing. H. Nendza, Verlag Glueckauf GmbH, Essen. Hirany, A. and Kulhawy, F. H. (1988). Conduct and Interpretation of Load Tests on Drilled Shaft Foundations: Detailed Guidelines, Report EL- 5915. Electric Power Research Institute, Palo Alto, CA, July, 374 pp. Hoek, E. (1983). “Strength of Jointed Rock Masses,” 23rd Rankine Lecture. Geotechnique, Vol. 33, No. 3, 187–223. Hoek, E. and Brown, E. T. (1980). Underground Excavations in Rock. The Institution of Mining and Metallurgy, London, 527 pp. Hoek, E. and Brown, E. T. (1988). “The Hoek-Brown Failure Criterion— a 1988 Update.” Proc. 15th Canadian Rock Mech. Symp, ed. J. H. Curran, Toronto, Civil Engineering Department, University of Toronto, 31–38. Hoek, E. and Brown, E. T. (1997). “Practical Estimates of Rock Mass Strength.” International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol. 34, No. 8, December, 1165–1186. Hoek, E., Carranza-Torres, C., and Corkum, B. (2002). “Hoek-Brown Failure Criterion—2002 Edition.” Proceedings of the 5th North American Rock Mechanics Symposium and 17th Tunneling Associa- tion of Canada Conference: NARMS-TAC 2002, July 7–10, Univer- sity of Toronto, 267–271. Hoek, E., Kaiser, P. K., and Bawden, W. F. (1995). Support of Under- ground Excavations in Hard Rock, Balkema, Rotterdam, 215 pp. Hoek, E. and Marinos, P. (2000). “Predicting Squeeze.” Tunnels and Tunneling International, November, 45–51. Honjo, Y., and Amatya, S. (2005). “Partial Factors Calibration Based on Reliability Analyses for Square Footings on Granular Soils.” Géotech- nique, Vol. 55, No. 6, 479–491. Honjo, Y., and Kusakabe, O. (2002). “Proposal of a Comprehensive Foundation Design Code: Geocode 21 ver.2.” In Foundation Design Codes and Soil Investigation in View of International Harmonization and Performance-based Design, Y. Honjo, O. Kusakabe, K. Matsui, M. Kouda, and G. Pokharel, eds., Balkema, 95–106. Honjo, Y., Kusakabe, O., Matsui, K., Kikuchi, Y., Kobayashi, K., Kouda, M., Kuwabara, F., Okumura, F., and Shirato, M. (2000). “National Report on Limit State Design in Geotechnical Engineering: Japan.” Proc. International Workshop on Limit State Design in Geotechnical Engineering (LSD2000), Melbourne, 217–240. Honjo, Y., Suzuki, M., Shirato, M., and Fukui, J. (2002). “Determina- tion of Partial Factors for a Vertically Loaded Pile Based on Relia- bility Analysis.” Soils and Foundations, Vol. 42, No. 5, 91–109. Horn, A. (1970). Sohlreibung und räumlicher Erdwiderstand bei massiven Gründungen in nichtbindigem Boden. Straßenbau und Straßen- verkehrstechnik, Bundesminister für Verkehr, Abt. Straßenbau. Hough, B. K. (1959). “Compressibility as the Basis for Soil Bearing Value.” Journal of the Soil Mechanics and Foundations Division, Vol. 85, Part 2. Hunt, R. E. (1986). Geotechnical Engineering Analysis and Evaluation. McGraw-Hill Inc., New York. Hvorslev, M. J. (1937). Iber die Festigkeitseigenschaften Gestörter Bindi- ger Böden. Køpenhavn. Ingra, T. S., and Baecher, G. B. (1983). “Uncertainty in Bearing Capac- ity of Sands.” Journal of Geotechnical and Geoenvironmental Engi- neering, Vol. 109, No. 7, 899–914. International Code Council. (2008). 2008 New York City Building Code, ICC, New York, NY. ISRM—International Society for Rock Mechanics (1981). Suggested Methods for Rock Characterization, Testing and Monitoring, ISRM Commission on Testing Methods, E. T. Brown (ed.), Pergamon, Oxford, UK. Jaky, J. (1944). “The Coefficient of Earth Pressure at Rest.” Journal for Society of Hungarian Architects and Engineers, 355–358. Jaky, J. (1948). “Pressure in Silos.” Proc. 2nd Intl. Conference on Soil Me- chanics and Foundation Engineering, Rotterdam, Vol. 1, 103–107. JRA (1996). Specifications for Highway Bridges IV: Substructures (SHB). Japan Road Association, Tokyo. Jumikis, A. R. (1956). “Rupture Surfaces in Sand under Oblique Loads.” Journal of Soil Mechanics and Foundation Design, Vol. 82, No. 1, 1–26. Kanda, J., and Shah, H. (1997). “Engineering Role in Failure Cost Eval- uation for Buildings.” Structural Safety, Vol. 19, No. 1, 79–89. Kim, S. G., Barker, R. M., Duncan, J. M., and Rojiani, K. B. (1991). “Part 3—Engineering Manual for Retaining Walls and Abutments.” In NCHRP Report 343: Manuals for the Design of Bridge Foundations, Barker et al., Transportation Research Board, National Research Council, Washington, DC, 115–159. Kimmerling, R. E. (2002). Geotechnical Engineering Circular No. 6— Shallow Foundations, FHWA-IF-02-054. FHWA, U.S. DOT, Wash- ington, DC, 310 pp.

135 Kisse, A. (2008). Entwicklung eines Systemgesetzes zur Beschreibung der Boden-Bauwerk-Interaktion flachgegruendeter Fundamente auf Sand. Heft 34 der Mitteilungsreihe des Instituts fuer Grundbau und Bodenmechanik, Hrsg. Prof. Dr.-Ing. W. Richwien, VGE Verlag GmbH, Essen. Kisse, A., and Lesny, K. (2007). Reliability-based Design of the Founda- tion of an Offshore Wind Energy Converter Using the Single Sur- face Hardening Model. In Applications of Statistics and Probability in Civil Engineering, Proc. 10th International Conference, eds. Kanda, J., Takada, T., and Furuta, H., June 31–July 3, 2007, Tokyo. Kobayashi, K., Kuwabara, F., and Ogura, H. (2003). “Limit State Design Development for Building Foundations.” Proc. of 5th Japan Con- ference on Structural Safety and Reliability, 901–908. Kulhawy, F. H. (1978). “Geomechanical Model for Rock Foundation Settlement.” Journal of the Geotechnical Engineering Division, Vol. 104, No. 2, February, 211–227. Kulhawy, F. H. and Goodman, R. E. (1980). “Design of Foundations on Discontinuous Rock.” Proceedings of the International Conference on Structural Foundations on Rock, International Society for Rock Mechanics, Vol. I, A. A. Balkema, Rotterdam, 209–220. Kulhawy, F. H. and Goodman, R. E. (1987). “Foundations in Rock.” In Ground Engineer’s Reference Book, F. G. Bell, ed., Butterworths, London. Kulhawy, F. and Mayne, P. (1990). Manual on Estimation of Soil Prop- erties for Foundation Design, Report EPRI-EL-6800. Electric Power Research Institute, Palo Alto, CA. Kulhawy, F. H. and Phoon, K. K. (2002). “Observations on Geotechnical Reliability-Based Design Development in North America.” In Foun- dation Design Codes and Soil Investigation in View of International Harmonization and Performance Based Design, Y. Honjo, O. Kusak- abe, K. Matsui, M. Kouda, and G. Pokharel, eds., A. A. Balkema, 31–50. Kulicki, J. M., Prucz, A., Clancy, C. M., Mertz, D. R., and Nowak, A. S. (2007). Final report for NCHRP Project 20-07/186, Updating the Calibration Report for the AASHTO LRFD Code. (Unpublished document.) Ladanyi, B., Dufour, R., Larocque, G. S., Samson, L., and Scott, J. S. (1974). “Report of the Subcommittee on Foundations and Near- Surface Structures to the Canadian Advisory Committee on Rock Mechanics.” 55 pp. Lambe, W. T., and Whitman, R. V. (1969). Soil Mechanics. Wiley, New York. Laubscher, D. H. (1977) “Geomechanics Classification of Jointed Rock Masses—Mining Applications.” T. I. Min. Metall. A 86 (1977), A1–A8. Lauffer, H. 1958. “Gebirgsklassifizierung fur den Stollenbau.” Geologie and Bauwesen, Vol. 24, No. 1, 46–51. Lesny, K. (2001). Entwicklung eines konsistenten Versagensmodells zum Nachweis der Standsicherheit flachgegruendeter Fundamente. Mitteilungen aus dem Fachgebiet Grundbau und Bodenmechanik der Universität Essen, Heft 27, Hrsg.: Prof. Dr.-Ing. W. Richwien, Verlag Glueckauf, Essen. Lesny, K. (2006). “The Role of Favourable and Unfavourable Actions in the Design of Shallow Foundations According to Eurocode 7.” In Foundation Analysis and Design—Innovative Methods (Geotechnical Special Publication No. 153), (Proceedings of Sessions of Geoshang- hai, June 6–8, Shanghai), 119–126. Lesny, K., and Kisse, A. (2004). “Safety of Shallow Foundations in Limit State Design.” Proc. Int. Workshop on Risk Assessment in Site Char- acterization and Geotechnical Design, Bangalore, India, 97–10. Lesny, K., Kisse, A., and Richwien, W. (2002). “Proof of Foundation Stability Using a Consistent Failure Model.” Proceedings of the In- ternational Conference on Probabilistics in Geotechnics—Technical and Economic Risk Estimation, Graz, Austria, 95–103. Lesny, K., Perau, E., Richwien W., and Wang, Z. (2000). Some Aspects on Subsoil Failure of Vertical Breakwaters. Forschungsbericht aus dem Fachbereich Bauwesen, Heft 83, Universitaet Essen. Lesny, K., and Richwien, W. (2002). A Consistent Failure Model for Sin- gle Footings Embedded in Sand. In Foundation Design Codes and Soil Investigation in View of International Harmonization and Performance, Honjo, Y., Kusakabe, O., Matsui, K., Kouda, M., and Pokharel, G., eds., Swets & Zeitlinger, Lisse, The Netherlands, 159–165. Liao, S. S. C., and Whitman, R. V. (1986). “Overburden Correction Factors for SPT in Sand.” Journal of Geotechnical Engineering, Vol. 112, No. 3, 373–377. Lo, K. Y., and Hefny, A. M. (2001). “Foundation on Rock.” Geotechni- cal and Geoenvironmental Handbook, R. K. Rowe, ed., Kluwer Aca- demic Publishers, 305–335. Lutenegger, A. J., and DeGroot, D. J. (1995). “Settlement of Shallow Foundations on Granular Soils” (report of research conducted for Massachusetts Highway Department, transportation research proj- ect contract #6332, task order #4). Marinos, P., and Hoek, E. (2001). “Estimating the Geotechnical Prop- erties of Heterogeneous Rock Masses Such as Flysch.” Bull. Eng. Geol. Env., Vol. 60, No. 2, 85–92. Martin, C. M., and Houlsby, G. T. (2000). Combined Loading of Spud- can Foundations on Clay: Laboratory Test. Géotechnique, Vol. 50, No. 4, 325–338. Martin, C. M., and Houlsby, G. T. (2001). Combined Loading of Spud- can Foundations on Clay: Numerical Modelling. Géotechnique, Vol. 51, No. 8, 687–699. Matula, M., and Holzer, R. (1978). “Engineering Typology of Rock Masses.” In Proc. Felsmekanik Kolloquium, Grundlagen und Andwen- dung der Felsmekanik, Karlsruhe, Germany, 107–121. Mayne, P. W., Christopher, B. R., and DeJong, J. (2001). Manual on Subsurface Investigations, FHWA NHI-01-031. National Highway Institute and FHWA, U.S. DOT, Washington, DC. Mayne, P. W. and Kulhawy, F. H. (1982). “Ko—OCR Relationships in Soil.” Journal of the Geotechnical Engineering Division, Vol. 108, No. 6, 851–872. Mayne, P. W. and Poulos, H. G. (2001). “Discussion: Approximate Dis- placement Influence Factors for Elastic Shallow Foundations.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127, No. 1, 100–102. Meyerhof, G. G. (1953). “The Bearing Capacity of Foundations under Eccentric and Inclined Loads.” Proc., 3rd Int. Conf. on Soil Mechan- ics and Foundation Engineering, Vol. 1, Zürich, 440–445. Meyerhof, G. G. (1963). “Some Recent Research on the Bearing Capacity of Foundations.” Canadian Geotechnical Journal, Vol. 1, No. 1, 16–26. Meyerhof, G. (1994). “Evolution of Safety Factors and Geotechnical Limit State Design,” Second Spencer J. Buchanan Lecture. Texas A&M University, College Station, TX, Nov. 4. Meyerhof, G. G., and Koumoto, T. (1987). “Inclination Factors for Bearing Capacity of Shallow Footings.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No. 9, 1013–1018. Michalowski, R. (1997). “An Estimate of the Influence of Soil Weight on Bearing Capacity Using Limit Analysis.” Soils and Foundation, Vol. 37, No. 4, 57–64. Michalowski, R. L., and You, L. (1998). “Effective Width Rule in Calcu- lations of Bearing Capacity of Shallow Footings.” Journal of Com- puters and Geotechnics, Vol. 23, No. 4, 237–253. Montrasio, L. (1994). Un Metodo per il calcolo die cedimenti di fon- dazioni su sabbia soggette a carichi eccentrici e inclinati, Dottorato di ricerca in Ingegneria Geotecnica, Universita di Milano (in Italian).

136 Montrasio, L., and Nova, R. (1997). “Settlements of Shallow Foundations on Sand: Geometrical Effects.” Géotechnique, Vol. 47, No. 1, 49–60. Muhs, H. (1971). Die experimentelle Untersuchung der Grenztragfae- higkeit nichtbindiger Boeden bei lotrechter Belastung. Degebo- Mitteilungen, Heft 27. Muhs, H., and Weiss, K. (1969). “The Influence of the Load Inclination on the Bearing Capacity of Shallow Footings.” Proc., 7th Int. Conf. on Soil Mechanics and Foundation Engineering, Vol. 2, Mexico City, 187–194. Munfakh, G. A., Arman, A., Collin, J. G., Hung, J. C-J., and Brouillette, R. P. (2001). Shallow Foundations Reference Manual, FHWA NHI-01-023. Federal Highway Administration, U.S. DOT, Wash- ington, D.C. NAVAC (Naval Facilities Engineering Command Design Manual 7.01) (1986). Naval Facilities Engineering Command, Alexandria, VA. Nendza, H. and Nacke, C. (1986). Der Einfluss der Lagerungsdichte auf die Tragfaehigkeit ueberwiegend horizontal beanspruchter und auf Sand gegruendeter Fundamente. Mitteilungen aus dem Fachgebiet Grundbau und Bodenmechanik der Universitaet Essen, Heft 12, Ed. Prof. Dr.-Ing. H. Nendza, VerlagGlueckauf GmbH, Essen. Nova, R., and Montrasio, L. (1991). “Settlements of Shallow Founda- tions on Sand.” Géotechnique, Vol. 41, No. 2, 243–256. Nowak, A. (1999). NCHRP Report 368: Calibration of LRFD Bridge Design Code. Transportation Research Board, National Research Council, Washington, DC. NRC (1995). National Building Code. National Research Council of Canada, Ottawa. OHBDC (1979, 1983, 1993). Ontario Highway Bridge Design Code. Min- istry of Transportation, Downsview, Ontario, Canada. Okahara, M., Fukui, J., Shirato, M., Matsui, K., and Honjo, Y. (2003). “National Report on Geotechnical Codes in Japan.” Proc. 12th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering. O’Neill, M. W. and Reese, L. C. (1999). Drilled Shafts: Construction Procedures and Design Methods, ADSC-TL-4, FHWA-IF-99-025. FHWA, U.S. DOT, Washington, DC. Orr, T. L. L. (2002). “Eurocode 7—A Code for Harmonized Geotech- nical Design.” Foundation Design Codes and Soil Investigation in View of International Harmonization and Performance Based Design, Y. Honjo, O. Kusakabe, K. Matsui, M. Kouda, and G. Pokharel, eds., Balkema, 3–12. Oumeraci, H., Kortenhaus, A., Allsop, W., de Groot, M., Crouch, R., Vrijling, H., and Voortman, H. (2001). Probabilistic Design Tools of Vertical Breakwaters, Balkema, Lisse, the Netherlands. Ovesen, N. K. (1989). “General Report/Discussion Session 30: Codes and Standards.” Proc. 12th International Conference on Soil Mechanics and Foundation Engineering, Vol. 4, Rio de Janeiro, 2751–2764. Paikowsky, S. G. (1989). “A Static Evaluation of Soil Plug Behavior with Application to the Pile Plugging Problem.” D.Sc. Dissertation, M. I. T., Cambridge, MA. Paikowsky, S. (2005). “Serviceability in the Design of Bridge Founda- tions.” Proceedings of the International Workshop on the Evaluation of Eurocode 7. March 31–April 1, Trinity College, Dublin, 251–261. Paikowsky, S. G., Amatya, S., Lesny, K. and Kisse, A. (2009b). “Devel- oping LRFD Design Specifications for Bridge Shallow Founda- tions.” Proc. IS-GIFU2009 2nd Intl. Symposium on Geotechnical Safety and Risk, June 11–12, Gifu, Japan. Paikowsky, S. (with contributions by Birgission, G., McVay, M., Nguyen, T., Kuo, C., Baecher, G., Ayyub, B., Stenerson, K., O’Mally, K., Chernauskas, L., and O’Neill, M.) (2004). NCHRP Report 507: Load and Resistance Factor Design (LRFD) for Deep Foundations. Transportation Research Board of the National Academies, Washington, DC. Paikowsky, S. G., Palmer, C. J., and DiMillio, A. F. (2000). “Visual Ob- servation and Measurement of Aerial Stress Distribution under a Rigid Strip Footing.” In Performance Confirmation of Constructed Geotechnical Facilities (Geotechnical Special Publication No. 94), (Proceedings of the 17th International Conference on Soil Me- chanics and Geotechnical Engineering, October 5–9, Alexandria, Egypt), 148–169. Paikowsky, S. G., Fu, Y., Amatya, S., and Canniff, M. (2009a). “Uncer- tainty in Shallow Foundations Settlement Analysis and Its Utilization in SLS Design Specifications.” Proc. 17th International Conference on Soil Mechanics and Geotechnical Engineering, IOS Press, Fairfax, VA. Paikowsky, S. G., Fu, Y., and Lu, Y. (2005). Final Report for NCHRP Project 20-07/Task 183, LRFD Foundation Design Implementation and Specification Development. (Unpublished document.) Paikowsky, S. G., and Hajduk, E. L. (1997). “Calibration and Use of Grid-Based Tactile Pressure Sensors in Granular Material.” Geo- technical Testing Journal, GTJODJ, Vol. 20, No. 2, June, 218–241. Paikowsky, S. G., Lesny, K., Amatya, S., Canniff, M., Kisse, A., and Muganga, R. (2008). Quarterly Report for NCHRP Project 24-31, LRFD Design Specifications for Shallow Foundations. Geosciences Testing & Research, Inc., North Chelmsford, MA. Paikowsky, S. G., and Lu, Y. (2006). “Establishing Serviceability Limit State in the Design of Bridge Foundations.” In Foundation Analy- sis and Design—Innovative Methods (Geotechnical Special Publica- tion No. 153), (Proceedings of Sessions of Geoshanghai, June 6–8, Shanghai), 49–58. Paikowsky, S. G., Player, C. M., and Connors, P. J. (1995). “A Dual In- terface Apparatus for Testing Unrestricted Friction of Soil along Solid Surfaces.” Geotechnical Testing Journal, GTJODJ, Vol. 18, No. 2, 168–193. Paikowsky, S. G., Xi, F., and Hajduk, E. L. (1996). “Closure to a Discus- sion on ‘A Dual Interface Apparatus for Testing Friction of Soil Along Solid Surfaces’ by Paikowsky, Player, and Connors.” Geo- technical Testing Journal, Vol. 19, No. 4, December, 447–451. Palmström A. (1982). “The Volumetric Joint Count—A Useful and Simple Measure of the Degree of Rock Mass Jointing.” IAEG Con- gress, New Delhi. Palmström, A. (1995). “Rmi—A Rock Mass Characterization System for Rock Engineering Purposes.” Ph.D. thesis, University of Oslo, Norway, 400 pp. Paolucci, R. and Pecker, A. (1997). “Seismic Bearing Capacity of Shal- low Strip Foundations on Dry Soils.” Soils and Foundations, Vol. 37, No. 3, 95–105. Peck, R. P., Hanson, W. E., and Thornburn, T. H. (1974). Foundation Engineering, 2nd ed., Wiley, New York. Perau, E. (1995). Ein systematischer Ansatz zur Berechnung des Grund- bruchwiderstands von Fundamenten. Mitteilungen aus dem Fachge- biet Grundbau und Bodenmechanik der Universität Essen, Heft 19, Hrsg.: Prof. Dr.-Ing. W. Richwien, Essen: Glückauf-Verlag. Perau, E. (1997). “Bearing Capacity of Shallow Foundations.” Soils and Foundations, Vol. 37, No. 4, 77–83. Phoon, K. K. and Kulhawy, F. H. (1999). “Characterization of Geotech- nical Variability.” Canadian Journal of Geotechnical Engineering, Vol. 36, No. 4, 612–624 (including Discussion and Reply, Vol. 38, 2001, pp. 213–215). Claudio Cherubini and Concetta I. Giasi (2001). Characterization of geotechnical variability and Evaluation of geotechnical property variability: Discussion. Canadian Journal of Geotechnical Engineer- ing, Vol. 38, No. 1, 213. Phoon, K. K. and Kulhawy, F. H. (2001). Characterization of geotech- nical variability and Evaluation of geotechnical property variabil-

137 ity: Reply. Canadian Journal of Geotechnical Engineering, Vol. 38, No. 1, 214–215. Phoon, K. K., and Kulhawy, F. H. (2002). “EPRI Study on LRFD and MRFD for Transmission Line Structure Foundations.” In Founda- tion Design Codes and Soil Investigation in View of International Harmonization and Performance, Honjo, Y., Kusakabe, O., Matsui, K., Kouda, M., and Pokharel, G., eds., Swets & Zeitlinger, Lisse, The Netherlands, 253–261. Phoon, K., Kulhawy, F., and Grigoriu, M. (1995). Reliability-Based Design of Foundations for Transmission Line Structures, Report TR-105000. Electrical Power Research Institute, Palo Alto, CA. Phoon, K. K., Kulhawy, F. H., and Grigoriu, M. D. (2000). “Reliability- Based Design for Transmission Line Structure Foundations.” Com- puters and Geotechnics, Vol. 26, No. 3–4, 169–185. Prakoso, W. A. (2002). Reliability-Based Design of Foundations on Rock Masses for Transmission Line and Similar Structures. Ph.D. disser- tation, Cornell University. Prandtl, L. (1920). Ueber die Haerte plastischer Koerper. Nachrichten der Gesellschaft der Wissenschaften, Berichte der mathem.-physikal. Klasse, 74–85. Prandtl, L. (1921). Ueber die Eindringfestigkeit (Haerte) plastischer Baustoffe und die Festigkeit von Schneiden. Zeitschrift für ange- wandte Mathematik und Mechanik 1, Band 1, 15–20. Priest, S. D. and Hudson, J. A. (1976). “Discontinuity Spacings in Rock.” International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol. 13, No. 5, May, 135–148. Rabcewicz, L. v. (1964). “The New Austrian Tunneling Method. Part 1.” Water Power (November), 511–515. Rabcewicz, L. v. (1965). “The New Austrian Tunneling Method. Part 2.” Water Power (January), 19–24. Rabcewicz, L. v. (1975). “Tunnel Under Alps Uses New, Cost-Saving Lining Method.” Civil Engineering (October), 66–68. Ramamurthy, T., and Arora, V. K. (1993). A Classification for Intact and Jointed Rocks, Geotechnical Engineering of Hard Soils-Soft Rocks, Balkema, Rotterdam, 235–242. Ramelot and Vanderperre (1950). “Les fondations de pylônes élec- triques: leur résistance au renversement, leur stabilité, leur calcul.” IRSIA, Comptes rendus de recherches, No. 2. Reissner, H. (1924). “Zum Erddruckproblem.” Proc., 1st Int. Congress of Applied Mechanics, Delft, 295–311. Romana, M. (1985). “New Adjustment Ratings for Application of Bieniawski Classification to Slopes.” In Proc. International Sympo- sium on the Role of Rock Mechanics, Zacatecas, 49–53. Rosenblueth, E., and Esteva, L. (1972). Reliability Basis for Some Mexi- can Codes, ACI Publication SP-31. American Concrete Institute, Detroit, MI. Rubinstein, R. Y. (1981). Simulation and the Monte Carlo Method. Wiley, New York, 278 pp. Sabatini, P. J., Bachus, R. C., Mayne, P. M., Schneider, J. A., and Zettler, T. E. (2002). Geotechnical Engineering Circular No. 5: Evaluation of Soil and Rock Properties, FHWA-IF-02-034. Federal Highway Ad- ministration, U.S. DOT, Washington, DC. Schmertmann, J. H. (1970). “Static Cone to Compute Static Settlement over Sand.” Journal of Soil Mechanics and Foundation Division, Vol. 96, No. 3, 1011–1043. Schmertmann, J. H., Brown, P. R., and Hartman, J. P. (1978). “Im- proved Strain Influence Factor Diagrams.” Journal of the Geotech- nical Engineering Division, Vol. 104, No. 8, 1113–1135. Schneider, J. (2000). “Safety—A Matter of Risk, Cost and Consensus.” Structural Engineering International, Vol. 10, No. 4, 266–269. Schofield and Wroth (1968). Critical State Soil Mechanics, McGraw Hill, Maidenhead. Schultze, J. (1952). “Der widerstand des Baugrundes gegen schraege Sohlpressungen.” Die Bautechnik, Vol. 29, No. 1, 19–34. Simpson, B., and Driscoll, R. (1998). Eurocode—A Commentary, Report 344. Building Research Establishment (BRE), UK. Sjöberg, J. (1997). “Estimating Rock Mass Using the Hoek-Brown Fail- ure Criterion and Rock Classification.” Lulea University of Tech- nology, Department of Civil and Mining Engineering, Division of Rock Mechanics, Sweden. Sowers, G. F. (1979). Introductory Soil Mechanics and Foundations: Geotechnical Engineering, 4th ed., MacMillan, New York, 621 pp. Sowers, G. B. and Sowers, G. F. (1970). Introductory Soil Mechanics and Foundations, 3rd ed., MacMillan, New York, 556 pp. Steenfelt, J. S. (1977). “Scale Effect on Bearing Capacity Factor Nγ.” Proc., 9th Int. Conf. on Soil Mechanics and Foundation Engineering, Vol. 1, Tokyo, 749–752. Stille, H., Groth, T., and Fredriksson, A. (1982). “FEM-analysis of Rock Mechanical Problems with JOBFEM.” Stiftelsen Bergteknisk Fonkning—BeFo, Stockholm, 307, 1/82. Szerszen, M. M. and Nowak, A. S. (2003). “Calibration of Design Code for Buildings (ACI 318): Part 2—Reliability Analysis and Resistance Factors.” ACI Structural Journal, Vol. 100, No. 3, 383–391. Taly, M. (1997). Design of Modern Highway Bridges. McGraw-Hill, Inc., 1,368 pp. Terzaghi, K. (1946). “Rock Defects and Loads on Tunnel Supports.” In Rock Tunneling with Steel Supports (eds., R. V. Proctor and T. L. White), 17–99, Youngstown, OH, Commercial Shearing and Stamping Company. Terzaghi, K. (1943). Theoretical Soil Mechanics. Wiley, New York. Terzaghi K., and Peck R. B. (1948). Soil Mechanics in Engineering Prac- tice. Wiley, New York. Thoft-Christensen, P., and Baker, M. (1982). Structural Reliability Theory and Its Application. Springer-Verlag, New York. Ticof, J. (1977). Surface Footings on Sand under General Planar Loads. Ph.D. thesis, University of Southampton, UK. Tonias, D. (1995). Bridge Engineering: Design, Rehabilitation, and Main- tenance of Modern Highway Bridges, McGraw-Hill, Inc., New York, 470 pp. Uesugi, M. and Kishida, H. (1986). “Frictional Resistance at Yield be- tween Dry Sand and Mild Steel.” Soils and Foundations, Vol. 26, No. 4, 139–149. Vesic, A. (1963). “Bearing Capacity of Deep Foundations in Sand.” Highway Research Record 39: Stresses in Soils and Layered Systems, National Academy of Sciences, National Research Council, Wash- ington, DC, 112–153. Vesic´, A. (1973). “Analysis of Ultimate Loads of Shallow Foundations.” Journal of the Soil Mechanics and Foundations Division, Vol. 99, No. 1, 54–73. Vesic´, A. (1975). “Bearing Capacity of Shallow Foundations.” In Foun- dation Engineering Handbook, H. F. Winterkorn and H. Y. Fang, eds., Van Nostrand Reinhold, New York, 121–147. Vollpracht, H.-J., and Weiss, K. (1975). Anhang 1: Großmaßstäbliche Belastungsversuche zur Untersuchung des Gleitvorgangs. Berichte aus der Bauforschung, Die Grenztragfähigkeit von flach gegründeten Streifenfundamenten unter geneigter Belastung nach Theorie und Versuch. Wickham, G. E., Tiedemann, H. R., and Skinner, E. H. (1972). “Sup- port Determination Based on Geologic Predictions.” Proc. North American Rapid Excavation and Tunneling Conf., Chicago, 43–64. Williams, G. W., Duncan, J. M. and Sehn, A. L. (1987). “Simplified Chart Solution of Compaction-Induced Earth Pressures on Rigid

138 Structures.” Geotechnical Engineering Report, Virginia Polytechnic Institute and State University, Blacksburg, VA. Williamson, D. A. (1980). “Uniform Rock Classification for Geotech- nical Engineering Purposes.” Transportation Research Record 783, TRB, National Research Council, Washington DC, 9–14. Williamson, D. A. (1984). “Unified Rock Classification System.” Bull Assoc. Eng. Geol. XXI (3), 345–354. Withiam, J. L. (2003). “Implementation of the AASHTO LRFD Bridge Design Specifications for Substructure Design.” Proc. In- ternational Workshop on Limit State Design in Geotechnical Engi- neering Practice (LSD2003), 37–38. (Full paper in CD-ROM, World Scientific.) Withiam, J., Voytko, E., Barker, R., Duncan, M., Kelly, B., Musser, S., and Elias, V. (1998). Load and Resistance Factor Design (LRFD) of Highway Bridge Substructures, FHWA HI-98-032. FHWA, U.S. DOT, Washinton, DC. Wolff, T. F. (1989). “Pile Capacity Prediction Using Parameter Func- tions.” In Predicted and Observed Axial Behaviors of Piles: Results of a Pile Prediction Symposium (Geotechnical Special Publication No. 23), ASCE, 96–106. Wyllie, D. C. (1992). Foundations on Rock, E & FN Spon, London. Yoon, G. L., and O’Neill, M. W. (1997). “Resistance Factors for Single Driven Piles from Experiments.” In Transportation Research Record 1569, Transportation Research Board, National Research Council, Washington, DC, 47–54. Zienkiewicz, O. (2005). The Finite Element Method, 6th ed., Elsevier, Amsterdam. Zhang, L. (2003). “Limit State Design Experiences in Hong Kong and Mainland China.” Proc. 12th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering. Zhang, L., and Einstein, H. (1998). “End Bearing Capacity of Drilled Shafts in Rock.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124, No. 7, 574–584. Zhang, L., Tang, W., and Ng, C. (2001). “Reliability of Axially Loaded Driven Pile Groups.” Journal of Geotechnical and Geoenvironmen- tal Engineering, Vol. 127, No. 12, 1051–1060. Zhu, F., Clark, J. I., and Phillips, R. (2001). “Scale Effect of Strip and Circular Footings Resting on Dense Sand.” Journal of Geotechnical Geoenvironmental Engineering, Vol. 127, No. 7, 613–621. Zhu, M., and Michalowski, L. (2005). “Shape Factors for Limit Loads on Square and Rectangular Footings.” Journal of Geotechnical Geoenvironmental Engineering, Vol. 131, No. 2, 223–231.

Next: Unpublished Material »
LRFD Design and Construction of Shallow Foundations for Highway Bridge Structures Get This Book
×
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

TRB’s National Cooperative Highway Research Program (NCHRP) Report 651: LRFD Design and Construction of Shallow Foundations for Highway Bridge Structures explores recommended changes to Section 10 of the American Association of State Highway and Transportation Officials’ Load Resistance Factor Design Bridge Design Specifications for the strength limit state design of shallow foundations.

Appendixes A through H for NCHRP Report 651 are available online.

Appendix A: Alternative Model Background

Appendix B: Findings—State of Practice, Serviceability and Databases

Appendix C: Questionnaire Summary

Appendix D: UML-GTR ShalFound07 Database

Appendix E: UML-GTR RockFound07 Database

Appendix F: Shallow Foundations Modes of Failure and Failure Criteria

Appendix G: Bias Calculation Examples

Appendix H: Design Examples

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!