The mathematical sciences are likely to experience stresses and disruptions in the coming decade and a half, affecting both research and teaching. The business model of mathematical sciences departments will undergo major changes, owing to cost pressures, online course offerings, and so on. There may be less demand for lower-division teaching, but expanded opportunities for training students from other disciplines and people already in the workforce.2 Mathematical scientists should work proactively—through funding agencies, university administrations, professional societies, and within their departments—to be ready for these changes.

Mathematical science departments, particularly those at large state universities, have a tradition of teaching service courses for nonmajors. These courses, especially the large lower-division ones, help to fund positions for mathematical scientists at all levels, but especially for junior faculty and graduate teaching assistants. The teaching of mathematical sciences, both to majors and nonmajors, justifies the positions of a substantial portion of those faculty members performing mathematical sciences research. But this business model is already changing, and it faces a number of challenges in the coming years. University education has become more expensive, straining family budgets severely and often leaving students with substantial debt when they graduate. The desire to reduce these costs is pushing students to take some of their lower-division studies at state and community colleges. It is also leading university administrations to hire a second tier of nonladder faculty with larger teaching loads, reduced expectations of research productivity, and lower salaries, or to implement a series of online courses that can be taught with less faculty involvement. New methods of teaching, particularly for introductory courses, may precipitate changes in the existing model. While these trends have been observed for a decade or more, financial concerns may be increasing pressure to shift more teaching responsibilities in these ways. The result could be a reduction in the number of faculty slots in many departments.

The pressure to economize is, if anything, increasing. In his 2012 State of the Union speech, President Obama said, “So let me put colleges and universities on notice: If you can’t stop tuition from going up, the funding you get from taxpayers will go down. Higher education can’t be a luxury—it is an economic imperative that every family in America should be able to afford.” Three days later he unveiled “a financial aid overhaul that for the first time


2 An analysis from the National Science Foundation (NSF) (Kelly Kang, 2012, “Graduate Enrollment in Science and Engineering Grew Substantially in the Past Decade but Slowed in 2010,” InfoBrief from NSF’s National Center for Science and Engineering Statistics, NSF 21-317, available at found that overall graduate enrollment in science and engineering grew 35 percent from 2000 to 2010, to more than 550,000. As documented in Chapter 3 of this report, many science and engineering fields are increasingly reliant on the mathematical sciences.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement