National Academies Press: OpenBook

Haze in the Grand Canyon: An Evaluation of the Winter Haze Intensive Tracer Experiment (1990)

Chapter: Appendix 1: Nature of the Visibility Problem

« Previous: References
Suggested Citation:"Appendix 1: Nature of the Visibility Problem." National Research Council. 1990. Haze in the Grand Canyon: An Evaluation of the Winter Haze Intensive Tracer Experiment. Washington, DC: The National Academies Press. doi: 10.17226/1574.
×
Page 43
Suggested Citation:"Appendix 1: Nature of the Visibility Problem." National Research Council. 1990. Haze in the Grand Canyon: An Evaluation of the Winter Haze Intensive Tracer Experiment. Washington, DC: The National Academies Press. doi: 10.17226/1574.
×
Page 44

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Appendix 1: Nature of the Visibility Problem . . A person's judgment of aesthetic damage is related to the ability to see form, texture, and color of scenes at various distances. Visibility can be quan- tified directly in terms of human judgments or in terms of indices, such as light extinction, that can be related to judgments. Visibility can be Ascribed quantitatively in terms of the following indices: · Contrast the relative brightness of various features in a scene; · Discoloration—shifts in the wavelength distribution of light as it moves through the atmosphere; · Visual range—the farthest distance at which an observer is able to distin- guish a large black object against the horizon sky; and · .Extinctton coefficient- the fraction of light that is attenuated per unit of distance as a light beam traverses the atmosphere. A decrease in visual range from 130 to 110 km produces a noticeable change in the contrast (relative brightness of various features within a scene) and coloration (distribution in wavelengths of received light) of a view only 30 km away. Contrast and coloration yield the best correlation with subjective human evaluations of visual air quality. Of the four visibility indices, the extinction coefficient is the one that is most directly related to the composition of the atmosphere. The total amount of light extinction is the sum of scattering and absorption of light by particles and gases. The extinction coefficient, BeXt, in conventional units of Mm~i [~106 m)~ i, thus comprises four additive components, BeXt = Bsg + Bag + Bsp + Bap Bsg = light scattering by gas molecules. Gas scattering is almost entirely attributable to oxygen and nitrogen molecules in the air, and it is often referred to as Rayleigh or natural "blue-sky" scatter. It is 43

44 · APPENDIX1 essentially unaffected by pollutant gases, such as SO2, because of their low relative concentrations. Bag = light absorption by gas molecules. Nitrogen dioxide (NO2) is the only significant atmospheric trace gas that absorbs visible light. Bsp = light scattering by particles. Bs usually is dominated by fine parti- cles, because the scattering ef~ciency/unit particle mass exhibits a pronounced peak in the range of 0.1-1.0 ~m. Many pollutant aerosol species occur in this size range. Bap = light absorption by particles. Bap arises almost entirely from black carbon particles. . · — In the absence of particles, visibility is limited by the Rayleigh scattering of air molecules. Under such conditions, the nominal visual range, which is one component of visibility, is on the order of 330-400 km. Fluctuations of mass concentration up to a few tenths of a ~g/m3 should cause little perceptible change in the optical properties of the atmosphere, except perhaps under conditions of high RH. At an aerosol mass of a few tenths of a ~g/m3, aero- so} extinction starts to become significant compared with Rayleigh scattering. Increases in aerosol concentrations above this level could cause significant decreases in visual range and shifts in color and contrast. RH affects visibility significantly especially for aerosols that are hydroscopic, such as those con- taining SO4=. The size of hydroscopic aerosols can change dramatically with changes in RH. However, the factors controlling growth are quite complex and very sensitive to the composition of the aerosol. During WHITED, the mean fine particle concentration at Hopi Point was reported as about 1.6 g/m3; of this, SO4= contributed about 0.5 ~g/m3. Past estimates (Trijonis et al., 1989) suggest the following annual average apportionment of BCX' in the region of GCNP: Bsg = 10 Mew. Bsp (natural) = 7 Maw. Bsp (regional anthropogenic average) = 8 Mm~~. These values suggest a natural background extinction (Bs + Bsp (natural)) of about 17 Mm~ out of the current regional average olg about 25 Mm~ . Accordingly, pollution aerosols from all sources have on the average resulted In about a 50% increase in light extinction above natural conditions. During haze episodes, pollution aerosols can produce extinction values 2 or more times higher than natural levels (Trijonis et al., 1989), so that pollution effects dominate natural contributions. Under such circumstances, visibility will be severely degraded.

Next: Appendix 2: Selected Pages From the NPS-Whitex Report »
Haze in the Grand Canyon: An Evaluation of the Winter Haze Intensive Tracer Experiment Get This Book
×
 Haze in the Grand Canyon: An Evaluation of the Winter Haze Intensive Tracer Experiment
Buy Paperback | $45.00
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

This book presents working principles for assessing the relative importance of anthropogenic emission sources that contribute to haze in U.S. national parks and wilderness areas and discusses various alternative source control methods.

Haze in the Grand Canyon evaluates and recommends strategies for improving critical scientific and technical gaps in the information and databases on haze. It examines such topics as methods for determining individual source contributions, regional and seasonal factors that affect haze, strategies for improving air quality models, the interactive role of photochemical exodants, and scientific and technological considerations in choosing emission control measures.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!