Cover Image

HARDBACK
$99.95



View/Hide Left Panel

Page 64

influence decisions by individuals and organizations and include taxes and subsidies on production factors (carbon tax, fuel tax) and on products and other outputs (emission taxes, product taxes), financial inducements (tax credits, subsidies), and transferable emission rights (tradable emission reductions, tradable credits).

Interventions at all levels could effectively reduce greenhouse warming. For example, individuals could reduce energy consumption, recycle goods, and reduce consumption of deleterious materials. Local governments could control emissions from buildings, transport fleets, waste processing plants, and landfill dumps. State governments could restructure electric utility pricing structures and stimulate a variety of efficiency incentives. National governments could pursue action in most of the policy areas of relevance. International organizations could coordinate programs in various parts of the world, manage transfers of resources and technologies, and facilitate exchange of monitoring and other relevant data.

The choice of policy instrument depends on the objective to be served. Although this analysis of mitigation options does not include all possibilities, the panel is hopeful that it does identify the most promising options. This analysis provides the beginnings of a structure and, a process for identifying those strategies that could appropriately mitigate the prospect of greenhouse warming.

Conclusions

There is a potential to inexpensively reduce or offset greenhouse gas emissions in the United States. In particular, the maximum feasible potential reduction for the options labeled "net benefit" and "low cost" in Table 6.2 totals about 3.6 billion tons (3.6 Gt) of CO2-equivalent emissions per year. (Here, as elsewhere in the report, tons are metric.) This is a little more than one-third of the total 1990 greenhouse gas emissions in the United States and represents an optimistic upper bound on what could be achieved using these options.

A lower bound can be estimated from Figure 6.4. Arbitrarily using a cutoff of between $10 and $20 per ton of CO2-equivalent emission reduction would produce a level of about 1 Gt of CO2-equivalent emissions per year, or a little more than 10 percent of current greenhouse gas emissions in the United States.

This analysis suggests that the United States could reduce its greenhouse gas emissions by between 10 and 40 percent of the 1990 level at very low cost. Some reductions may even be at a net savings if the proper policies are implemented.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement