by proposed land disturbances with artificially created wetland areas.

WETLANDS

Term for a broad group of wet habitats. Wetlands are lands transitional between terrestrial and aquatic systems where the water table is usually at or near the surface or the land is covered by shallow water (Cowardin et al., 1979). Wetlands include features that are permanently wet, or intermittently water covered, such as swamps, marshes, bogs, muskegs, potholes, swales, glades, slashes, and overflow land of river valleys. According to the 1989 federal wetlands delineation manual, wetlands include lands saturated for at least 7 days to a depth of 12 inches. A newly proposed definition by the Bush Administration would be lands that have 15 days of standing water and 21 days of surface saturation.

ENDNOTE

1.  

For extended discussion of functional attributes, see Cairns, J., Jr., and J. R. Pratt, eds. 1989. Functional Testing of Aquatic Biota for Estimating Hazards of Chemicals. Special Technical Publication 988. American Society for Testing and Materials, Philadelphia, Pa. 242 pp. For contrast with structural values, see Cairns, J., Jr., and J. R. Pratt. 1986. On the relation between structural and functional analyses of ecosystems. Environ. Toxicol. Chem. 5:785–786.

REFERENCES

Bhowmik, N. G., and J. B. Stall. 1979. Hydraulic Geometry and Carrying Capacity of Floodplains. Water Research Center, Research Report No. 145, University of Illinois, Urbana, 111.


Chow, V.T. 1964. Handbook of Applied Hydrology: A Compendium of Water-resources Technology. McGraw-Hill Book Co., New York.

Cowardin, L. M., V. Carter, F. C. Golet, and E. T. LaRoe. 1979. Classification of Wetlands and Deepwater Habitats of the United States. Office of Biological Services, U.S. Fish and Wildlife Service, U.S. Department of the Interior, Washington, D.C.


Elwood, J. W., J. D. Newbold, R.V. O'Neill, and W. Van Winkle. 1983. Resource spiraling: An operational paradigm for analyzing lotic ecosystems. Pp. 3–27 in Thomas D. Fontaine III and Steven M. Bartell, eds., Dynamics of Lotic Ecosystems. Ann Arbor Science Publishers, Ann Arbor, Mich. 494 pp.


Junk, W., P. B. Bayley, and R. E. Sparks. 1989. The flood pulse concept in river-floodplain systems. Proceedings of the International Large River Symposium (LARS). Canadian Special Publication of Fisheries and Aquatic Sciences 106:1110–127.


Odum, E. P., J. T. Finn, and E. H. Franz. 1979. Perturbation theory and the subsidystress gradient. BioScience 34:558–562.


Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell, and C. E. C. Cushing. 1980. The river continuum concept. Can. J. Fish. Aquat. Sci. 37:130–137.


Ward, J. V., and J. A. Stanford. 1983. The serial discontinuity concept of lotic ecosystems. Pp. 29–42 in T. D. Fontaine III and S. M. Bartell, eds., Dynamics of Lotic Ecosystems. Ann Arbor Science Publishers, Ann Arbor, Mich. 494 pp.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement