Nephrotex: A Professional Practice Simulation for Engaging, Educating, and Assessing Undergraduate Engineers

Lead Institution: University of Wisconsin-Madison, Madison, WI

Collaborating Institutions: University of Pennsylvania

Category: First Year

Date Implemented: August 2010

Website: epistemicgames.org

logo

img

Program Description: The Nephrotex virtual internship can be classified as an epistemic game—a computer simulation of a professional practice. The primary objectives of Nephrotex are (1) to offer an alternative first year program that models authentic engineering practices, (2) to give students an opportunity to engage in engineering design and complex problem solving, and thus (3) to motivate students, especially women and underrepresented minorities, to continue in the field of engineering. First year students play the role of interns at a fictitious medical device company and participate in complex problem solving. The instructors and teaching assistants role play as employees of the company. Students are also prompted to learn more about the company, its employees, mission, vision, and history through short assignments that require students to explore the Nephrotex website including creating staff pages. Students go through two complete engineering design-build-test cycles and must select a final optimum prototype at the end of their internship and justify their design decisions by writing reports in their digital engineering notebooks. Students must also try to satisfy stakeholders within the company who have conflicting values, which adds additional complexity to the design problem. In fact, the design of the simulation does not allow for students to create a device that satisfies all the stakeholders’ requests. Thus, each student individually justifies their design selection and explains why he/she chose to meet certain stakeholders’ requests and not others. In addition to the structure of the design exercise and the simulated professional environment, the fact that the simulation is entirely online means that it is broadly accessible to large and small classes, in non-traditional or extension classes, at a broad range of institution types. Faculty, graduate students, and undergraduate students from the College of Engineering and the College of Education were involved in the development, building, and testing of this project. The co-PIs on this project were a professor from the biomedical engineering department and a professor from the educational psychology department (learning sciences area). Two undergraduate students in engineering physics, two undergraduate students in biomedical engineering, and two graduate students in learning sciences were involved in the development and implementation of this program. A mechanical engineering professor, the instructor for the course, also assisted with original implementation.

Anticipated and Actual Outcomes: We implemented Nephrotex in a first year course in which students choose two half-semester modules to study a single topic in engineering in depth; Nephrotex was offered as one possible module, and the other modules involved students working in teams to read and discuss research addressing engineering problems, but did not engage in engineering design. We anticipated the Nephrotex students would learn engineering content, be more motivated to persist in engineering, view engineering more positively, and have a better understanding of what an engineer does compared to students in other modules. We expected that this increase would be more significant for women and that students would be engaging in complex discourse surrounding engineering design and problem solving. The data from fall 2010 support these three claims about the experience of students in Nephrotex. All students in Nephrotex had statistically significant gains in engineering content knowledge related to the design task posed in Nephrotex. Women in Nephrotex had a statistically significant increase in positively viewing engineering careers compared to women in the control group. The more that a student participated in complex engineering design discourse in Nephrotex, the more likely they were to report that they viewed engineering more positively.

Assessment Information: There were two sources of data collected for this analysis: (1) students’ pre- and post-survey responses about perceptions of engineering careers and motivation to persist in engineering and (2) students’ discourse through participation in the chat program. All data was recorded and collected digitally. The discourse data was coded using a set of codes developed from ABET criteria for undergraduate engineering program outcomes and using epistemic frame theory as a guide for professional practices. We used Epistemic network analysis (ENA), which allows measurement of the development of connections students make between skills, knowledge, identity, values, and epistemology of engineering professional practice. This quantification helps us determine if students are engaging in engineering design and solving problems similar to the ways that professional engineers solve problems. We then analyzed these data to investigate whether students were more motivated to pursue engineering after participating in a virtual internship and how students were discussing engineering design problem-solving in the context of the virtual internship. Our research questions for the first implementation of the virtual internship were focused on engineering content learning gains, engagement with the virtual internship, attitudes towards engineering, especially among women, and motivation to continue in engineering.

Funding/Sustainability: Initial funding was provided by an NSF grant of $500,000. The program costs included salaries for PIs, undergraduate students, and graduate students, travel, materials and supplies, and publication costs. We are exploring the idea of pairing with other academic institutions as well as potential industry partners.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 30
Nephrotex: A Professional Practice Simulation for Engaging, Educating, and Assessing Undergraduate Engineers Lead Institution: University of Wisconsin-Madison, Madison, WI Collaborating Institutions: University of Pennsylvania Category: First Year Date Implemented: August 2010 Website: epistemicgames.org Program Description: The Nephrotex virtual internship can be engage in engineering design. We anticipated the Nephrotex classified as an epistemic game—a computer simulation of a students would learn engineering content, be more motivated to professional practice. The primary objectives of Nephrotex are persist in engineering, view engineering more positively, and (1) to offer an alternative first year program that models have a better understanding of what an engineer does compared authentic engineering practices, (2) to give students an opportu- to students in other modules. We expected that this increase nity to engage in engineering design and complex problem would be more significant for women and that students would solving, and thus (3) to motivate students, especially women be engaging in complex discourse surrounding engineering and underrepresented minorities, to continue in the field of design and problem solving. The data from fall 2010 support engineering. First year students play the role of interns at a these three claims about the experience of students in Nephro- fictitious medical device company and participate in complex tex. All students in Nephrotex had statistically significant gains problem solving. The instructors and teaching assistants role in engineering content knowledge related to the design task play as employees of the company. Students posed in Nephrotex. Women in Nephrotex are also prompted to learn more about the had a statistically significant increase in company, its employees, mission, vision, positively viewing engineering careers and history through short assignments that compared to women in the control group. require students to explore the Nephrotex The more that a student participated in website including creating staff pages. Students go through two complex engineering design discourse in Nephrotex, the more complete engineering design-build-test cycles and must select a likely they were to report that they viewed engineering more final optimum prototype at the end of their internship and positively. justify their design decisions by writing reports in their digital Assessment Information: There were two sources of data engineering notebooks. Students must also try to satisfy collected for this analysis: (1) students’ pre- and post-survey stakeholders within the company who have conflicting values, responses about perceptions of engineering careers and motiva- which adds additional complexity to the design problem. In tion to persist in engineering and (2) students’ discourse fact, the design of the simulation does not allow for students to through participation in the chat program. All data was re- create a device that satisfies all the stakeholders’ requests. corded and collected digitally. The discourse data was coded Thus, each student individually justifies their design selection using a set of codes developed from ABET criteria for under- and explains why he/she chose to meet certain stakeholders’ graduate engineering program outcomes and using epistemic requests and not others. In addition to the structure of the frame theory as a guide for professional practices. We used design exercise and the simulated professional environment, the Epistemic network analysis (ENA), which allows measurement fact that the simulation is entirely online means that it is of the development of connections students make between broadly accessible to large and small classes, in non-traditional skills, knowledge, identity, values, and epistemology of or extension classes, at a broad range of institution types. engineering professional practice. This quantification helps us Faculty, graduate students, and undergraduate students from the determine if students are engaging in engineering design and College of Engineering and the College of Education were solving problems similar to the ways that professional engi- involved in the development, building, and testing of this neers solve problems. We then analyzed these data to investi- project. The co-PIs on this project were a professor from the gate whether students were more motivated to pursue engineer- biomedical engineering department and a professor from the ing after participating in a virtual internship and how students educational psychology department (learning sciences area). were discussing engineering design problem-solving in the Two undergraduate students in engineering physics, two context of the virtual internship. Our research questions for the undergraduate students in biomedical engineering, and two first implementation of the virtual internship were focused on graduate students in learning sciences were involved in the engineering content learning gains, engagement with the virtual development and implementation of this program. A mechani- internship, attitudes towards engineering, especially among cal engineering professor, the instructor for the course, also women, and motivation to continue in engineering. assisted with original implementation. Funding/Sustainability: Initial funding was provided by an Anticipated and Actual Outcomes: We implemented Nephro- NSF grant of $500,000. The program costs included salaries for tex in a first year course in which students choose two half- PIs, undergraduate students, and graduate students, travel, semester modules to study a single topic in engineering in materials and supplies, and publication costs. We are exploring depth; Nephrotex was offered as one possible module, and the the idea of pairing with other academic institutions as well as other modules involved students working in teams to read and potential industry partners. discuss research addressing engineering problems, but did not 30