Lee, S.S., B.K. Lee, G.S. Lee, W.F. Stewart, D. Simon, K. Kelsey, A.C. Todd, and B.S. Schwartz. 2001b. Associations of lead biomarkers and delta-aminolevulinic acid dehydratase and vitamin D receptor genotypes with hematopoietic outcomes in Korean lead workers. Scand. J. Work Environ. Health 27(6):402-411.

Leggett, R.W. 1993. An age-specific kinetic model of lead metabolism in humans. Environ. Health Perspect. 101(7):598-616.

NTP (National Toxicology Program). 2012. NTP Monograph on Health Effects of Low-Level Lead. Prepublication Copy. U.S. Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health. June 13, 2012 [online]. Available: http://ntp.niehs.nih.gov/?objectid=4F04B8EA-B187-9EF2-9F9413C68E76458E [accessed June 14, 2012].

O’Flaherty, E.J. 1991a. Physiologically based models for bone-seeking elements. I. Rat skeletal and bone growth. Toxicol. Appl. Pharmacol. 111(2):299-312.

O’Flaherty, E.J. 1991b. Physiologically based models for bone-seeking elements. II. Kinetics of lead disposition in rats. Toxicol. Appl. Pharmacol. 111(2):313-331.

O’Flaherty, E.J. 1991c. Physiologically based models for bone-seeking elements. III. Human skeletal and bone growths. Toxicol. Appl. Pharmacol. 111(2):332-341.

O’Flaherty, E.J. 1993. Physiologically based models for bone-seeking elements. IV. Kinetics of lead disposition in humans. Toxicol. Appl. Pharmacol. 118(1):16-29.

O’Flaherty, E.J. 1995. Physiologically based models for bone-seeking elements. V. Lead absorption and disposition in childhood. Toxicol. Appl. Pharmacol. 131(2):297-308.

Park, D.U., and N.W. Paik. 2002. Effect on blood lead of airborne lead particles characterized by size. Ann. Occup. Hyg. 46(2):237-243.

Rabinowitz, M.B. 1991. Toxicokinetics of bone lead. Environ. Health Perspect. 91:33-37.

Rabinowitz, M.B., G.W. Wetherill, and J.D. Kopple. 1973. Lead metabolism in the normal human: Stable isotope studies. Science 182(4113):725-727.

Rabinowitz, M.B., G.W. Wetherill, and J.D. Kopple. 1976. Kinetic analysis of lead metabolism in healthy humans. J. Clin. Invest. 58(2):260-270.

Roels, H., J. Konings, S. Green, D. Bradley, D. Chettle, and R. Lauwreys. 1995. Time-integrated blood lead concentration is a valid surrogate for estimating the cumulative lead dose assessed by tibial lead measurement. Environ. Res. 69(2):75-82.

Schütz, A., S. Skerfving, J.O. Christoffersonand, and I. Tell. 1987. Chelatable lead versus lead in human trabecular and compact bone. Sci. Total Environ. 61:201-209.

Schwartz, B.S., B.K. Lee, W. Stewart, K.D. Ahn, K. Springer, and K. Kelsey. 1995. Associations of delta-aminolevulinic acid dehydratase genotype with plant, exposure duration, and blood lead and zinc protoporphyrin levels in Korean lead workers. Am. J. Epidemiol. 142(7):738-745.

Schwartz, B.S., B.K. Lee, G.S. Lee, W.F. Stewart, D. Simon, K.T. Kelsey, and A.C. Todd. 2000a. Associations of blood lead, dimercaptosuccinic acid-chelatable lead, and tibia lead with polymorphisms in the vitamin D receptor and [delta]-aminolevulinic acid dehydratase genes. Environ. Health Perspect. 108(10):949-954.

Schwartz, B.S., W.F. Stewart, K.T. Kelsey, D. Simon, S. Park, J.M. Links, and A.C. Todd. 2000b. Associations of tibial lead levels with BsmI polymorphisms in the vitamin D receptor in former organolead manufacturing workers. Environ. Health Perspect. 108(3):199-203.

Schwartz, B.S., B.K. Lee, G.S. Lee., W.F. Stewart, S.S. Lee, K.Y. Hwang, K.D. Ahn, Y.B. Kim, K.I. Bolla, D. Simon, P.J. Parsons, and A.C. Todd. 2001. Associations of blood lead, dimercaptosuccinic acid-chelatable lead, and tibia lead with neurobehavioral test scores in South Korean lead workers. Am. J. Epidemiol. 153(5):453-464.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement