and delayed virus shedding compared with pandemic A/H1N1 virus.

Airborne transmission could be tested in a second mammalian model system such as guinea pigs (59), but this would still not provide conclusive evidence that transmission among humans would occur. The mutations we identified need to be tested for their effect on transmission in other A/H5N1 virus lineages (60), and experiments are needed to quantify how they affect viral fitness and virulence in birds and mammals. For pandemic preparedness, antiviral drugs and vaccine candidates against airborne-transmissible virus should be evaluated in depth. Mechanistic studies on the phenotypic traits associated with each of the identified amino acid substitutions should provide insights into the key determinants of airborne virus transmission. Our findings indicate that HPAI A/H5N1 viruses have the potential to evolve directly to transmit by aerosol or respiratory droplets between mammals, without reassortment in any intermediate host, and thus pose a risk of becoming pandemic in humans. Identification of the minimal requirements for virus transmission between mammals may have prognostic and diagnostic value for improving pandemic preparedness (34).


References and Notes

1.    R. G. Webster, W. J. Bean, O. T. Gorman, T. M. Chambers, Y. Kawaoka, Microbiol. Rev. 56, 152 (1992).

2.    P. Palese, M. L. Shaw, in Fields Virology, D. M. Knipe et al., Eds. (Lippincott Williams & Wilkins, Philadelphia, 2007), vol. 3, pp. 1647-1690.

3.    P. F. Wright, G. Neumann, Y. Kawaoka, in Fields Virology, D. M. Knipe et al., Eds. (Lippincott Williams & Wilkins, Philadelphia, 2007), vol. 3, pp. 1691-1740.

4.    W. Chen et al., Nat. Med. 7, 1306 (2001).

5.    G. M. Conenello, P. Palese, Cell Host Microbe 2, 207 (2007).

6.    R. A. Fouchier et al., J. Virol. 79, 2814 (2005).

7.    D. J. Alexander, Vet. Microbiol. 74, 3 (2000).

8.    D. J. Alexander, I. H. Brown, Rev. Sci Tech. 28, 19 (2009).

9.    R. G. Webster, R. Rott, Cell 50, 665 (1987).

10.  H. D. Klenk, W. Garten, Trends Microbiol. 2, 39 (1994).

11.  J. C. de Jong, E. C. Claas, A. D. Osterhaus, R. G. Webster, W. L. Lim, Nature 389, 554 (1997).


13.  I. N. Kandun et al., N. Engl. J. Med. 355, 2186 (2006).

14.  K. Ungchusak et al., N. Engl. J. Med. 352, 333 (2005).

15.  H. Wang et al., Lancet 371, 1427 (2008).

16.  E. de Wit, Y. Kawaoka, M. D. de Jong, R. A. Fouchier, Vaccine 26, D54 (2008).

17.  D. M. Tscherne, A. Garcia-Sastre, J. Cin. Invest. 121, 6 (2011).

18.  S. Jackson et al., J. Virol. 83, 8131 (2009).

19.  T. R. Maines et al., Proc. Natl. Acad. Sci. U.S.A. 103, 12121 (2006).

20.  T. R. Maines et al., Virology 413, 139 (2011).

21.  E. M. Sorrell, H. Wan, Y. Araya, H. Song, D. R. Perez, Proc. Natl. Acad. Sci. U.S.A. 106, 7565 (2009).

22.  E. M. Sorrell et al., Curr. Opin. Virol. 1, 635 (2011).

23.  H. L. Yen et al., J. Virol. 81, 6890 (2007).

24.  W. Smith, C. H. Andrewes, P. P. Laidlaw, Lancet 222, 66 (1933).

25.  See materials and methods and other supplementary materials on Science Online.

26.  J. A. Maher, J. DeStefano, Lab Anim. 33, 50 (2004).

27.  V. J. Munster et al., Science 325, 481 (2009).

28.  T. Costa et al., Vet. Res. 43, 28 (2012).

29.  A. Mehle, J. A. Doudna, Proc. Natl. Acad. Sci. U.S.A. 106, 21312 (2009).

30.  J. Steel, A. C. Lowen, S. Mubareka, P. Palese, PLoS Pathog. 5, e1000252 (2009).

31.  N. Van Hoeven et al., Proc. Natl. Acad. Sci. U.S.A. 106, 3366 (2009).

32.  E. K. Subbarao, W. London, B. R. Murphy, J. Virol. 67, 1761 (1993).


34.  R. A. M. Fouchier, S. Herfst, A. D. M. E. Osterhaus, Science 335, 662 (2012).

35.  S. Chutinimitkul et al., J. Virol. 84, 6825 (2010).

36.  R. J. Connor, Y. Kawaoka, R. G. Webster, J. C. Paulson, Virology 205, 17 (1994).

37.  S. Yamada et al., Nature 444, 378 (2006).

38.  M. A. Nowak, Trends Ecol. Evol. 7, 118 (1992).

39.  R. Bodewes et al., Am. J. Pathol. 179, 30 (2011).

40.  E. J. Schrauwen et al., J. Virol. 86, 3975 (2012).

41.  S. L. Epstein, J. Infect. Dis. 193, 49 (2006).

42.  A. J. McMichael, F. M. Gotch, G. R. Noble, P. A. Beare, N. Engl. J. Med. 309, 13 (1983).

43.  R. Bodewes et al., J. Virol. 85, 2695 (2011).

44.  J. H. Kreijtz et al., Vaccine 27, 4983 (2009).

45.  J. M. van den Brand etal., J. Infect Dis. 201, 993 (2010).

46.  Y. Ha, D. J. Stevens, J. J. Skehel, D. C. Wiley, Proc. Natl. Acad. Sci. U.S.A. 98, 11181 (2001).

47.  G. N. Rogers etal., J. Biol. Chem. 260, 7362 (1985).

48.  C. M. Deom, A. J. Caton, I. T. Schulze, Proc. Natl. Acad. Sci. U.S.A. 83, 3771 (1986).

49.  S. Y. Mir-Shekari, D. A. Ashford, D. J. Harvey, R. A. Dwek, I. T. Schulze, J. Biol. Chem. 272, 4027 (1997).

50.  I. A. Rudneva, N. A. Ilyushina, T. A. Timofeeva, R. G. Webster, N. V. Kaverin, J. Gen. Virol. 86, 2831 (2005).

51.  J. Stevens et al., J. Mol. Biol. 381, 1382 (2008).

52.  M. Matrosovich et al., J. Virol. 74, 8502 (2000).

53.  Y. Bao et al., J. Virol. 82, 596 (2008).


55.  A. Bataille, F. van der Meer, A. Stegeman, G. Koch, PLoS Pathog. 7, e1002094 (2011).

56.  M. Jonges et al., J. Virol. 85, 10598 (2011).

57.  E. de Wit et al., J. Virol. 84, 1597 (2010).

58.  M. Imai et al., Nature 10.1038/nature10831 (2012).

59.  A. C. Lowen, S. Mubareka, T. M. Tumpey, A. Garcia-Sastre, P. Palese, Proc. Natl. Acad. Sci. U.S.A. 103, 9988 (2006).

60.  WHO/OIE/FAO H5N1 Evolution Working Group, Influenza Other Respir. Viruses 3, 59 (2009).

Acknowledgments: We thank D. de Meulder, G. van Amerongen, and D. Akkermans for technical assistance. M. Peiris, Univ. of Hong Kong, provided A/Indonesia/5/2005 with permission from I. Kandun of the Indonesian government. This work was financed through NIAID-NIH contract HHSN266200700010C. D.J.S. and D.F.B. were supported in part by NIH Director’s Pioneer Award DP1-OD000490-01. We acknowledge a Nederlandse Organisatie voor Wetenschappelijk Onderzoek VICI grant, European Union FP7 program EMPERIE (223498), and Human Frontier Science Program grant P0050/2008. D.F.B. and D.J.S. acknowledge the use of the CamGrid distributed computing resource. Sequence data generated from this study were deposited in GenBank with accession numbers CY116643 to CY116698. Special arrangements are in place with the NIH and the contractor at Mount Sinai School of Medicine, New York, for sharing the viruses (and plasmids) in the present paper; please contact R.A.M.F. A.D.M. E.O. and G.F.R. are CSO and part-time employee of ViroClinics Biosciences BV. A.D.M.E.O. has advisory affiliations on behalf of Viroclinics Biosciences BV with GlaxoSmithKline, Novartis, and Roche. A.D.M.E.O. and R.A.M.F. are holders of certificates of shares in ViroClinics Biosciences B.V. To avoid any possible conflict of interests, Erasmus MC policy dictates that the shares as such are held by the Stichting Administratiekantoor Erasmus Personeelsparticipaties. The board of this foundation is appointed by the Board of Governors of the Erasmus MC and exercises all voting rights with regard to these shares.

Supplementary Materials

Materials and Methods

Supplementary Text

Figs. S1 to S10

Tables S1 to S6

References (61-72)

30 August 2011; accepted 31 May 2012


The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement