National Academies Press: OpenBook
« Previous: Front Matter
Suggested Citation:"Overview." National Research Council. 2013. Transitions to Alternative Vehicles and Fuels. Washington, DC: The National Academies Press. doi: 10.17226/18264.
×

Overview

This National Research Council report assesses the potential for reducing petroleum consumption and greenhouse gas (GHG) emissions by the U.S. light-duty vehicle fleet by 80 percent by 2050. It examines the technologies that could contribute significantly to achieving these two goals and the barriers that might hinder their adoption. Four general pathways could contribute to attaining both goals—highly efficient internal combustion engine vehicles and vehicles operating on biofuels, electricity, or hydrogen. Natural gas vehicles could contribute to the additional goal of reducing petroleum consumption by 50 percent by 2030.

Scenarios identifying promising combinations of fuels and vehicles illustrate what policies could be required to meet the goals. Several scenarios are promising, but strong and effective policies emphasizing research and development, subsidies, energy taxes, or regulations will be necessary to overcome cost and consumer choice factors.

All the vehicles considered will be several thousand dollars more expensive than today’s conventional vehicles, even by 2050, and near-term costs for battery and fuel cell vehicles will be considerably higher. Driving costs per mile will be lower, especially for vehicles powered by natural gas or electricity, but vehicle cost is likely to be a significant issue for consumers for at least a decade. It is impossible to know which technologies will ultimately succeed, because all involve great uncertainty. It is thus essential that policies be broad, robust, and adaptive.

All the successful scenarios combine highly efficient vehicles with at least one of the other three pathways. Large gains beyond the standards proposed for 2025 are feasible from engine and drivetrain efficiency improvements and load reduction (e.g., weight and rolling resistance). Load reduction will improve the efficiency of all types of vehicles regardless of the fuel used.

If their costs can be reduced and refueling infrastructure created, natural gas vehicles have great potential for reducing petroleum consumption, but their GHG emissions are too high for the 2050 GHG goal.

Drop-in biofuels (direct replacements for gasoline) produced from lignocellulosic biomass could lead to large reductions in both petroleum use and GHG emissions. While they can be introduced without major changes in fuel delivery infrastructure or vehicles, the achievable production levels are uncertain.

Battery costs are projected to drop steeply, but limited range and long recharge time are likely to limit the use of all-electric vehicles mainly to local driving. Advanced battery technologies are under development, but all face serious technical challenges.

Battery and fuel cell vehicles could become less expensive than the advanced internal combustion engine vehicles of 2050. Fuel cell vehicles are not subject to the limitations of battery vehicles, but developing a hydrogen infrastructure in concert with a growing number of fuel cell vehicles will be difficult and expensive.

The GHG benefits of all fuels will depend on their production and use without large net emissions of carbon dioxide. To the extent that fossil resources become a large source of non-carbon transportation fuels (electricity or hydrogen), then the successful implementation of carbon capture and storage will be essential.

Suggested Citation:"Overview." National Research Council. 2013. Transitions to Alternative Vehicles and Fuels. Washington, DC: The National Academies Press. doi: 10.17226/18264.
×
Page 1
Next: Summary »
Transitions to Alternative Vehicles and Fuels Get This Book
×
Buy Paperback | $59.00 Buy Ebook | $47.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

For a century, almost all light-duty vehicles (LDVs) have been powered by internal combustion engines operating on petroleum fuels. Energy security concerns about petroleum imports and the effect of greenhouse gas (GHG) emissions on global climate are driving interest in alternatives. Transitions to Alternative Vehicles and Fuels assesses the potential for reducing petroleum consumption and GHG emissions by 80 percent across the U.S. LDV fleet by 2050, relative to 2005.

This report examines the current capability and estimated future performance and costs for each vehicle type and non-petroleum-based fuel technology as options that could significantly contribute to these goals. By analyzing scenarios that combine various fuel and vehicle pathways, the report also identifies barriers to implementation of these technologies and suggests policies to achieve the desired reductions. Several scenarios are promising, but strong, and effective policies such as research and development, subsidies, energy taxes, or regulations will be necessary to overcome barriers, such as cost and consumer choice.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!