National Academies Press: OpenBook
« Previous: 2 Ensuring Appropriate Use of Biological Assets
Suggested Citation:"3 Advancing the Frontiers of Biological Research." National Research Council. 2013. The Unique U.S.-Russian Relationship in Biological Science and Biotechnology: Recent Experience and Future Directions. Washington, DC: The National Academies Press. doi: 10.17226/18277.
×

3

Advancing the Frontiers of Biological Research

Since the mid-1990s, thousands of Russian biological scientists and hundreds of American counterparts have been involved in cooperative research projects that have advanced the frontiers of biological research. Initially, the U.S. government covered almost all direct costs of cooperation. In recent years, Russian institutions have increasingly shared these direct costs, although in most areas their financial contributions still lag behind U.S. contributions. A few examples of significant cooperative research projects are presented in this chapter. Many other important research projects are chronicled in Appendixes C.2, C.3, and C.4.

One common indicator of mutual interests in cooperative research is the number of publications coauthored jointly by scientists from two or more countries. As set forth in Appendix F.1, American coauthors cited along with Russian coauthors have been very important for Russian scientists. Data for recent years shows that 11.5 percent of all coauthors who have collaborated with Russian coauthors have been from the United States. On the other hand, in general, Russian coauthors have not been very important for American scientists. Less than 0.4 percent of all coauthors who have collaborated with American coauthors have been from Russia.

At the same time, based on observations of research in Russian laboratories during the past decade by well-qualified American scientists, publications by Russian scientists—whether coauthored or authored independently—have not adequately reflected the achievements and potential of Russian researchers in the biological sciences. Clearly, Russian scientists need to give higher priority to publications in journals that meet international peer review standards, with particular attention to more detailed reporting of methodologies and accumulated data.

Committee members are familiar with details of a number of recent

Suggested Citation:"3 Advancing the Frontiers of Biological Research." National Research Council. 2013. The Unique U.S.-Russian Relationship in Biological Science and Biotechnology: Recent Experience and Future Directions. Washington, DC: The National Academies Press. doi: 10.17226/18277.
×

U.S.-Russian cooperative projects. Thus, this report relies in large measure on their personal observations, supplemented with views of a number of research managers in the two countries, in reaching conclusions as to the importance and shortcomings of various approaches to cooperative research in the biological sciences. While the significance of different research activities varies greatly, joint efforts have contributed in a variety of ways to advancing science, to strengthening the scientific infrastructure of Russia during a critical economic period for the country, and to setting the stage for future collaborative efforts.

The majority of cooperative research activities have been carried out in Russia, with significant financing by U.S. organizations. However, U.S. support of Russian-based research projects that were justified in the first instance on the basis of countering proliferation has almost vanished. Current plans of the two governments indicate additional reductions of cooperative research, however justified, are in the offing. As a positive trend, on the other hand, more even balances in the funding and location of joint activities are receiving serious consideration.

In particular, U.S. funders are increasingly reluctant to cover Russian salaries and equipment to be used for research at Russian institutions, given the improved financial situation in Russia. At the same time, a small but steady influx to the United States of Russian researchers invited to be temporary researchers at National Institutes of Health (NIH) facilities, U.S. universities, and other research settings in the United States will undoubtedly continue. But the magnitude of these types of support from U.S. programs is not great. For example, in recent years, less than 2 percent of NIH grants that were awarded to foreign scientists were given to applicants from Russia.

The recent decline in U.S. financial support for collaborative efforts has been disappointing for some researchers from both countries, particularly for those who have benefited from past cooperation but are no longer successful in finding support for continuing their collaborations. While the researchers in the two countries may have interesting ideas for future cooperation, current and anticipated budget reductions mean that some potentially valuable programs will not go forward. But judging from past experience, the impact from even a reduced number of activities that are jointly designed, successfully pass through peer review, and are then implemented should be substantial.

MOTIVATIONS FOR COLLABORATIVE RESEARCH

In past years, officials in the two countries dealing on a daily basis with proliferation issues were interested in involving former Russian defense-oriented scientists in high-quality, civilian-oriented research activities for at least two reasons. First, permanent redirection of scientists from defense-oriented to civilian careers requires their establishment of personal scientific reputations within the civilian research community so that the redirected scientists will be able to compete successfully for funding from many sources over the long term. Second, a

Suggested Citation:"3 Advancing the Frontiers of Biological Research." National Research Council. 2013. The Unique U.S.-Russian Relationship in Biological Science and Biotechnology: Recent Experience and Future Directions. Washington, DC: The National Academies Press. doi: 10.17226/18277.
×

broad understanding of the characteristics of dangerous pathogens—which is the strong suit of a number of former defense scientists—is important in preparing to deal with disease outbreaks that are attributable to natural causes. Many cooperative projects that have been undertaken in Russia, pursuant to the U.S. focus on preventing proliferation, have also made significant contributions in advancing scientific understanding of interest to both countries.

An example of the close ties between research activities for nonproliferation and for scientific advancement is illustrated by investigations of bacteriocins at a former defense-oriented facility, the State Research Center for Applied Microbiology in Obolensk. The research was designed to engage former defense scientists in seeking an alternative to agricultural antibiotics. An important result has been development of a patentable product (see Box 3-1).

Also of importance have been institutional-support efforts financed in large measure by the U.S. government to strengthen capabilities of a number of research teams throughout Russia. Breeding of laboratory rodents in Russia, highlighted in Box 3-2, is an example of a project that has enhanced Russian institutional capabilities to conduct important lines of research.

At times, Russian research teams, working with collaborators from the United States and other countries, have achieved results of fundamental importance. They have created laboratories of research excellence of worldwide interest. Looking to the future, an example is the investigation of proteome (Box 3-3). Reflecting on the past, an example is the sequence of the variola minor for the first time (Box 3-4).

A number of Russian research teams that received continuing support from U.S. organizations over many years had strong backgrounds in investigating dangerous pathogens. (See, for example, Appendix D.1 concerning activities and international interests of Vector, and Appendix D.2 concerning activities

Box 3-1
Research on Bacteriocins

Beginning in 2004, a team of American and Russian researchers developed bacteriocins, which are natural proteins produced by competing nonpathogenic bacteria that destroy Campylobacter in the intestines of farmed poultry, dramatically eliminating pathogens. Laboratory tests have shown that treated birds have Campylobacter populations that are millions or even billions of times lower than the populations of untreated birds. The research resulted in patent applications that could in time lead to alternatives to antibiotics in both the veterinary and medical fields.

SOURCE: Agricultural Research Service, January 2012.

Suggested Citation:"3 Advancing the Frontiers of Biological Research." National Research Council. 2013. The Unique U.S.-Russian Relationship in Biological Science and Biotechnology: Recent Experience and Future Directions. Washington, DC: The National Academies Press. doi: 10.17226/18277.
×

Box 3-2
Accreditation of Laboratory Animal Breeding Facility, 2004

The Association for Assessment and Accreditation of Laboratory Animal Care International awarded full accreditation to the SFP Animal Care Breeding Facility at the Pushchino Branch of the Institute of Bioorganic Chemistry. Its initial activities were limited to rodents. Benefits of accreditation include international recognition of the quality of the activities; inclusion of the new capabilities in international directories and publications; and eventually use by Russian researchers of internationally accepted approaches for support of their activities.

SOURCE: Biological Science in Russia, p. 74, 2007, cited in Appendix A.2.

Box 3-3
Human Proteome Project (linked to the Human Proteome Organization plasma protein project)

This project is to characterize the proteins encoded by the human genome. The roadmap section that is to be established by Russian scientists is to identify the proteins encoded by genes of chromosome 18. There will be pilot and master phases. The pilot phase is to identify at least one protein for each gene and determine the level of its expression and predominant modifications. Data will be obtained on individual variability of the proteome in blood plasma and liver tissue. The master phase will include experimental revelations of the modifications for all proteins of chromosome 18. Russia plans to establish technologies for proteomic studies integrating mass-spectrometry with atomic microscopy. American partners are the University of Michigan and the Institute of Systems Biology (Seattle).

SOURCE: Russian research manager, September 2012.

of the All-Russian Institute of Phytopathology). In other settings, Russian teams have long-term histories of civilian-oriented activities, although they have been sensitive to the possible diversion of technologies to inappropriate uses (see, for example, Appendix D.3 concerning the Research Institute of Influenza).

Suggested Citation:"3 Advancing the Frontiers of Biological Research." National Research Council. 2013. The Unique U.S.-Russian Relationship in Biological Science and Biotechnology: Recent Experience and Future Directions. Washington, DC: The National Academies Press. doi: 10.17226/18277.
×

Box 3-4
Sequence of the Variola Minor Virus Genome DNA

During the late 1990s and into the early 2000s, scientists from Vector and the Centers for Disease Control and Prevention collaborated in the determination of the genomic sequences of a number of smallpox viruses. The work was carried out at the early stages of the genomics revolution when the genomic signature of most pathogens remained unknown. This historic accomplishment led to an international debate on the need for retention of live variola virus at the two centers designated by the World Health Organization as repositories for the remaining strains of smallpox viruses.

SOURCE: Department of Molecular Biology of Genomes, Vector, 2000.

ORGANIZATIONAL AND FINANCIAL INTERESTS IN BIOLOGICAL RESEARCH

From the Russian perspective, the political and financial situations in 2012 are dramatically different from the situations 10 to 15 years earlier. Now, the Russian government is reluctant to carry out projects that are of major interest only to the United States, which was commonplace throughout the Russian scientific community when funds were scarce. The concept of true partnerships is evolving, which is a healthy development.

Characteristics of such partnerships are set forth in Box 3-5. New programs to this end have been established by the Russian Ministry of Education and Science, acting through Russian research universities, and by the Russian Foundation for Basic Research, which finances small research projects throughout the country. U.S. government agencies (e.g., the National Science Foundation [NSF] and NIH) also provide opportunities for bilateral cooperation. However, except for support of joint programs in AIDS-related research sponsored by NIH, the U.S. government has not put in place cooperative programs that have been established specifically to support U.S.-Russian cooperation in the biological sciences and at the same time are broadly available to interested applicants through a competitive process.

A number of bilateral governmental agreements and memoranda of understanding are in place to provide frameworks for cooperation in biological research. (See Appendix B) The broadest agreement is the long-standing U.S.-Russia Science and Technology Cooperation Agreement, which provides an umbrella for research activities of interest to a number of government agencies in the two countries that have like-minded partners in the other country. An example of a

Suggested Citation:"3 Advancing the Frontiers of Biological Research." National Research Council. 2013. The Unique U.S.-Russian Relationship in Biological Science and Biotechnology: Recent Experience and Future Directions. Washington, DC: The National Academies Press. doi: 10.17226/18277.
×

Box 3-5
Characteristics of Effective Partnerships

•   Common interests and common goals.

•   Joint planning and joint decisions concerning project design and modification as necessary.

•   Equitable sharing of costs and fiscal responsibility.

•   Frequent interactions—electronically and in person.

•   Equitable sharing of results of collaboration, including joint authorships and sharing of rights to intellectual property that is developed.

SOURCE: NRC Report on the Biological Threat Reduction Program, p. 69, 2007, cited in Appendix A.2.

Box 3-6
Long-term Census of Arctic Waters, Air, and Life-forms

In the summer of 2009, the Russian oceanographic vessel Professor Khromov transported 50 scientists, primarily from the United States and Russia, into reaches of the Bering Sea that are particularly sensitive to climate change. For 6 weeks, they collected samples of air, water, and life-forms, which involved dragging heavy nets along the sea floor to obtain bottom-dwelling organisms. They also observed fish and crabs that survived the unfavorable northern conditions as they measured currents, temperatures, and salt content. Such periodic joint investigations are an important aspect of global efforts to understand climate change that affects the fishery, environmental, and other interests of countries of the northwest Pacific region.

SOURCE: National Oceanic and Atmospheric Administration, 2011.

program carried out under this agreement calls for biology-oriented investigations of the Bering Sea. (See Box 3-6.)

As to memoranda of understanding or other types of government-to-government agreements, many departments and ministries have such arrangements with their counterparts. An unusual arrangement is the agreement between NIH and the Russian Academy of Sciences, which presumably will actively involve both government and nongovernment organizations. (See Box 3-7.)

Suggested Citation:"3 Advancing the Frontiers of Biological Research." National Research Council. 2013. The Unique U.S.-Russian Relationship in Biological Science and Biotechnology: Recent Experience and Future Directions. Washington, DC: The National Academies Press. doi: 10.17226/18277.
×

Box 3-7
U.S.-Russia Scientific Forum

•   Umbrella agreement between the U.S. Department of Health and Human Services and the Russian Ministry of Health and Social Development.

•   Agreement between the National Institutes of Health and the Russian Academy of Sciences (plus other partners from both countries).

•   Annual meetings and smaller workshops on selected biomedical topics.

•   Topics of initial interest include cancer, cardiovascular diseases, infectious and rare diseases, and translational research training.

SOURCE: NIH, June 2012. (See Appendix F.5.)

INDIVIDUAL INVESTIGATORS

While centrally managed exchanges receive much of the publicity about cooperative activities, an important backbone of bilateral research cooperation has long been the activities of individual scientists who seek out and maintain contacts with colleagues with similar interests. They obtain financial support from whatever sources are available at critical times in their activities. Sometimes they simply resort to e-mail correspondence, to side meetings at international conferences, or to privately organized visits to the laboratories of their colleagues. Ideally, they have in place a mechanism that will help ensure continuation over a number of years.

A particularly successful program in fostering such direct contacts of young investigators in the biological sciences was a program organized by the Howard Hughes Medical Institute in the late 1990s and into the early 2000s. It has been credited with being the springboard for successful careers of a number of promising young biologists at Russian institutions. (See Box 3-8.)

Grants by NIH, and occasionally by NSF, to support individual U.S. and Russian scientists working together are sometimes important. (See Appendixes C.5 and C.7.) American scientists are sometimes eager to add a Russian dimension to their projects, particularly if this outreach provides access to unique Russian expertise. And in recent years, the Russian Ministry of Education and Science has been providing Russian universities with funds to reach out and engage leading western scientists in their activities. Also, both sides have facilitated participation by scientists from the two countries in selected international meetings.

Now an increasing number of Russian senior scientists are becoming regular hosts for international visitors. For example, Appendix D.4 identifies many out-

Suggested Citation:"3 Advancing the Frontiers of Biological Research." National Research Council. 2013. The Unique U.S.-Russian Relationship in Biological Science and Biotechnology: Recent Experience and Future Directions. Washington, DC: The National Academies Press. doi: 10.17226/18277.
×

Box 3-8
Support for Early-Career Russian scientists (1995–2005)

In 1995, 2000, and 2005, the Howard Hughes Medical Institute awarded a total of 25 grants to Russian investigators, along with grants to investigators from other countries, to explore cutting-edge topics in biology-related fields. The awards provided up to $500,000 for 5 years, to be used to support relatively young principal investigators and, to the extent appropriate, their research teams. The principal investigators could travel abroad, but only for short periods of time. In the biology-oriented city of Pushchino, for example, the awards kept important laboratories functioning at a time when the institutes were on the verge of collapse. They in effect saved important research programs in the poverty-stricken town.

SOURCE: Observations in Russia by NRC staff, April 1999.

Box 3-9
Pathogens That Destroy Important Crops

U.S. agricultural scientists, working in cooperation with Russian colleagues, for the first time developed a general map of plant diseases in Russia, including molecular characterization of the most diverse among 2,000 collected strains. They uncovered new strains of pathogens dangerous for potatoes, cereals, sunflowers, and mustard crops.

SOURCE: Vavilov Institute of Plant Industry, September 2011.

reach activities of institutes of the Siberian Branch of the Russian Academy of Sciences. Some interlocutors spend considerable time interacting with scientists both in their laboratories in Russia and in collaborating laboratories in the United States. Still, these limited activities that are focused on U.S. institutions pale in comparison with (a) much greater travel between the United States and the countries of Europe and (b) exchanges involving Russian and European scientists who take advantage of easy travel connections.

Another aspect to be taken into account in addressing collaborative research activities is the common practice of dividing scientific research into basic and applied categories. Box 3-9 presents an example of research that straddles the border.

Suggested Citation:"3 Advancing the Frontiers of Biological Research." National Research Council. 2013. The Unique U.S.-Russian Relationship in Biological Science and Biotechnology: Recent Experience and Future Directions. Washington, DC: The National Academies Press. doi: 10.17226/18277.
×

THE WAY AHEAD

Many forms of collaboration have paid off in the past and offer opportunities for the future. Usually, collaboration has been most productive when the participants have frequent opportunities to spend time together. E-mail, Skype, international meetings, brief visits to counterpart laboratories, participation in expeditions, and many other channels for contact come into play. Only the researchers know when collaboration is paying off. Their views on moving forward are critical, and they should have a loud voice in planning future activities.

There is little likelihood that the level of bilateral cooperation in basic research that was reached during the past decade will soon again be attained. Neither country currently has large budgets for international research activities. But with each demonstration of successful engagement, the case for thinking globally and focusing on those opportunities wherein the potential returns on investments are highest should lead to increased support for U.S.-Russian collaboration.

The following conclusion recognizes the many common interests and complementary strengths in basic science in the two countries and the importance of the two countries being effectively engaged in scientific areas of increasing interest. Scientists from both countries have good track records in opening new trails for investigating topical areas as they emerge on the scene. The objective of cooperation in biotechnology as a route to commercial success with economic payoffs for both sides depends to a considerable degree on basic research capabilities of the two countries. Finally, cooperation in basic research can provide access by U.S. scientists to novel ideas of strong counterparts while upgrading Russia’s capabilities to innovate that currently lag behind the capabilities of a number of other countries.

A number of governmental and nongovernmental research centers in both countries will be increasingly interested in the returns on investments in collaborative basic research that draws on the strengths of the two countries in fields of increasing international interest, such as the areas of common interests set forth in Chapter 10.

Suggested Citation:"3 Advancing the Frontiers of Biological Research." National Research Council. 2013. The Unique U.S.-Russian Relationship in Biological Science and Biotechnology: Recent Experience and Future Directions. Washington, DC: The National Academies Press. doi: 10.17226/18277.
×

This page intentionally left blank.

Suggested Citation:"3 Advancing the Frontiers of Biological Research." National Research Council. 2013. The Unique U.S.-Russian Relationship in Biological Science and Biotechnology: Recent Experience and Future Directions. Washington, DC: The National Academies Press. doi: 10.17226/18277.
×
Page 51
Suggested Citation:"3 Advancing the Frontiers of Biological Research." National Research Council. 2013. The Unique U.S.-Russian Relationship in Biological Science and Biotechnology: Recent Experience and Future Directions. Washington, DC: The National Academies Press. doi: 10.17226/18277.
×
Page 52
Suggested Citation:"3 Advancing the Frontiers of Biological Research." National Research Council. 2013. The Unique U.S.-Russian Relationship in Biological Science and Biotechnology: Recent Experience and Future Directions. Washington, DC: The National Academies Press. doi: 10.17226/18277.
×
Page 53
Suggested Citation:"3 Advancing the Frontiers of Biological Research." National Research Council. 2013. The Unique U.S.-Russian Relationship in Biological Science and Biotechnology: Recent Experience and Future Directions. Washington, DC: The National Academies Press. doi: 10.17226/18277.
×
Page 54
Suggested Citation:"3 Advancing the Frontiers of Biological Research." National Research Council. 2013. The Unique U.S.-Russian Relationship in Biological Science and Biotechnology: Recent Experience and Future Directions. Washington, DC: The National Academies Press. doi: 10.17226/18277.
×
Page 55
Suggested Citation:"3 Advancing the Frontiers of Biological Research." National Research Council. 2013. The Unique U.S.-Russian Relationship in Biological Science and Biotechnology: Recent Experience and Future Directions. Washington, DC: The National Academies Press. doi: 10.17226/18277.
×
Page 56
Suggested Citation:"3 Advancing the Frontiers of Biological Research." National Research Council. 2013. The Unique U.S.-Russian Relationship in Biological Science and Biotechnology: Recent Experience and Future Directions. Washington, DC: The National Academies Press. doi: 10.17226/18277.
×
Page 57
Suggested Citation:"3 Advancing the Frontiers of Biological Research." National Research Council. 2013. The Unique U.S.-Russian Relationship in Biological Science and Biotechnology: Recent Experience and Future Directions. Washington, DC: The National Academies Press. doi: 10.17226/18277.
×
Page 58
Suggested Citation:"3 Advancing the Frontiers of Biological Research." National Research Council. 2013. The Unique U.S.-Russian Relationship in Biological Science and Biotechnology: Recent Experience and Future Directions. Washington, DC: The National Academies Press. doi: 10.17226/18277.
×
Page 59
Suggested Citation:"3 Advancing the Frontiers of Biological Research." National Research Council. 2013. The Unique U.S.-Russian Relationship in Biological Science and Biotechnology: Recent Experience and Future Directions. Washington, DC: The National Academies Press. doi: 10.17226/18277.
×
Page 60
Next: 4 Applications of Science in the Public and Private Sectors »
The Unique U.S.-Russian Relationship in Biological Science and Biotechnology: Recent Experience and Future Directions Get This Book
×
Buy Paperback | $54.00 Buy Ebook | $43.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

In the fall of 2010, the U.S. National Academies (consisting of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine) and the Russian Academy of Sciences (in cooperation with the Russian Academy of Medical Sciences and the Russian Academy of Agricultural Sciences) initiated a joint study of U.S.-Russian bilateral engagement in the biological sciences and biotechnology (hereinafter collectively referred to as bioengagement). The U.S. Department of State and the Russian Academy of Sciences provided support for the study. The academies established a joint committee of 12 leading scientists from the two countries to assess bioengagement activities since 1996 and to provide recommendations as to collaborative efforts in the near future. The Unique U.S.-Russian Relationship in Biological Science and Biotechnology: Recent Experience and Future Directions summarizes the principal conclusions and recommendations of the study.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!