Although other methods are under consideration, HiPER appears to favor the direct drive, shock ignition method. The project is collaborating with universities on the development of technologies for fast ignition. HiPER appears to have no intention of pursuing indirect drive ignition, possibly, at least in part, because French law forbids use of military program data for civilian use. The U.K.’s Atomic Weapons Establishment has been working with the United States on indirect drive at the National Ignition Facility (NIF).

The preliminary design for the ignition target for HiPER uses an aluminum shell containing deuterium-tritium (DT) ice and vapor; a gain greater than 100 is desired for commercial inertial fusion energy (IFE) purposes. Mass production, cryolayering, and chamber injection of these targets are currently under study by Micronanics, General Atomics, and laboratories in the Czech Republic. Much of the design of European approaches to IFE is being done using DUED, a code developed in Italy, and MULTI, a code developed in Spain.

A two-stage development approach to the HiPER chamber is under consideration. The first stage would be a technology integration demonstration, while the next stage would be an IFE reactor. A “consumable” first wall concept is being studied wherein the damaging effects of debris and reaction products on the first wall are mitigated. One consumable wall concept involves gas-filled removable tiles as a modular solution to this problem. Partnerships with the magnetic fusion energy (MFE) community could be of interest for solving these challenges, which are not unique to IFE.

A 3- to 5-kJ laser unit representative of a larger modular scheme for HiPER is currently under development by four European Union teams. The goal of this research thrust is to have a 10 percent efficient laser capable of reaching 1 MJ of energy at 10 Hz.

The timeline for the entire HiPER project begins with a technological development and risk reduction phase from the present to approximately 2020; a design, build, and test phase from approximately 2017 to 2029; and, finally, a reactor design phase from approximately 2025 to 2036. These activities are all intended to be done at a single site to reduce costs and redundancies. During this time, it is anticipated that NIF will have achieved ignition, and that HiPER will have received some business investment.

See the Chapter 2 section “The Global R&D Effort on Solid-State Lasers for IFE Drivers” for more information on laser development in Europe.

FRANCE—LASER MEGAJOULE (LMJ)

The Centre lasers intenses et applications (CELIA), centered at the University of Bordeaux, organizes and administers a collaboration among French academic institutions, the Commissariat à l’énergie atomique et aux énergies alternatives



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement