Appendix A

Nonresponse Research in Federal Statistical Agencies

Although the panel considered the issue of nonresponse in surveys in both the private and the public sector and in both the United States and abroad, we placed more emphasis on U.S.-public-sector–sponsored surveys primarily because, with a few important exceptions, the largest, most consistent, and most costly survey operations in social science fields are conducted by and for the U.S. federal government.

In its two workshops, the panel heard from survey methodologists from five U.S. federal statistical agencies who summarized the state of nonresponse research in their agencies. These presentations are summarized in this appendix.

BUREAU OF LABOR STATISTICS

In a presentation to the panel, John Dixon of the Bureau of Labor Statistics (BLS) stated that the response rates in surveys sponsored by BLS range from a high of about 92 percent in the Current Population Survey (CPS) (labor force and demographics) to about 55 percent in the Telephone Point of Purchase Survey (TPOPS) (commodity and services purchasing behavior). The response trends for most BLS surveys are stable. The Consumer Price Index Housing Survey had a problem at the end of 2009 due to budgetary constraints, but has recovered. TPOPS had a decline in the last decade, but has stabilized. The American Time Use Survey (ATUS) has been low, but stable. TPOPS is a random digit dialing (RDD) survey, and ATUS is a telephone survey of specific members of CPS households. Reporting on bias studies, Dixon said that a CPS-Census match yielded propensity scores



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 127
Appendix A Nonresponse Research in Federal Statistical Agencies A lthough the panel considered the issue of nonresponse in surveys in both the private and the public sector and in both the United States and abroad, we placed more emphasis on U.S.-public-sector– sponsored surveys primarily because, with a few important exceptions, the largest, most consistent, and most costly survey operations in social science fields are conducted by and for the U.S. federal government. In its two workshops, the panel heard from survey methodologists from five U.S. federal statistical agencies who summarized the state of non- response research in their agencies. These presentations are summarized in this appendix. BUREAU OF LABOR STATISTICS In a presentation to the panel, John Dixon of the Bureau of Labor Statistics (BLS) stated that the response rates in surveys sponsored by BLS range from a high of about 92 percent in the Current Population Survey (CPS) (labor force and demographics) to about 55 percent in the Telephone Point of Purchase Survey (TPOPS) (commodity and services purchasing behavior). The response trends for most BLS surveys are stable. The Con- sumer Price Index Housing Survey had a problem at the end of 2009 due to budgetary constraints, but has recovered. TPOPS had a decline in the last decade, but has stabilized. The American Time Use Survey (ATUS) has been low, but stable. TPOPS is a random digit dialing (RDD) survey, and ATUS is a telephone survey of specific members of CPS households. Reporting on bias studies, Dixon said that a CPS-Census match yielded propensity scores 127

OCR for page 127
128 NONRESPONSE IN SOCIAL SCIENCE SURVEYS that indicated little bias in labor force statistics; the time-use survey stud- ies have also found little bias except for “volunteering” (see Dixon, 2012). The Consumer Expenditure Survey studies have found very little bias in expenditures (Goldenberg et al., 2009). In conducting these surveys, BLS tends to use six methods to evaluate nonresponse: linkage to administrative data; propensity scores and process data; the results of experiments with alternative practices and designs; comparisons to other surveys; benchmark data; and the R-index. When linking survey to administrative data, BLS has found that the estimate of bias due to refusals based on the last 5 percent is similar to the estimate based on linkage to the Census 2000 long-form sample. However, these studies have shortcomings in that rarely are all the records linked success- fully. Consequently, the linked measure may be defined differently from the survey estimate, and it may have error. The R-index uses a propensity score model for nonresponse and relates that to other variables (usually frame variables, such as urbanicity, poverty, etc.). The BLS studies used 95 percent confidence intervals for the R-index, somewhat flatter than the response rate. Since one of the major flaws in nonresponse studies lies in what is not known, the use of confidence inter- vals that account for the estimation of both the measure of interest and the model of nonresponse would be helpful. CENSUS BUREAU Panel member Nancy Bates from the Census Bureau reported that C ­ ensus Bureau nonresponse research studies have covered the gamut. T ­ opics have included causes of nonresponse, techniques for reducing non­ response, nonresponse adjustments, nonresponse metrics and measurement, consequences of nonresponse (bias, costs), nonresponse bias studies, re- sponsive designs and survey operations, the use of administrative records and auxiliary data and paradata, level of effort studies, and panel or longitudinal survey nonresponse. During her presentation, Bates offered different examples of research, including mid-decade decennial census tests to target bilingual Spanish language questionnaires; a test adding a re- sponse “­ essage deadline” to mail materials; the addition of an Internet m response option; and varying the timing of the mail implementation strat- egy (e.g., the timing of advance letters, replacement questionnaires, and reminder postcards). Nonresponse research in conjunction with the 2010 Census included an experiment that tested different confidentiality and pri- vacy messages and another that increased the amount of media spending in matched-pair geographic areas. Additionally, the Census Bureau sponsored three ethnographic studies to better understand nonresponse among hard- ­ to-count populations.

OCR for page 127
APPENDIX A 129 Bates also discussed nonresponse research associated with the Ameri- can Community Survey (ACS), including a questionnaire format test (grid versus sequential layout), a test of sending additional mailing pieces to households without a phone number, and a test of adding an Internet op- tion as a response mode. For other Census Bureau demographic surveys, Bates mentioned nonresponse tests involving incentives (debit cards) offered ­ to ­efusals in the Survey of Income and Program Participation and in r the National Survey of College Graduates. Other examples included non­ response bias studies, including studies considering the use of propensity models in lieu of traditional post-adjustment nonresponse weights. She concluded with a discussion of administrative records and how they hold great potential for understanding non-ignorable nonresponse. Currently, most Census Bureau studies using administrative records are more focused on assessing survey data quality, such as underreporting or misreporting, and less focused on nonresponse. Many Census Bureau nonresponse research projects are tied to a par- ticular mode, namely mail, since both the decennial census and the ACS use this mode. Bates observed that many Census Bureau research projects are big tests with large samples and several test panels. The majority of tests try out techniques designed to reduce nonresponse, while only a few are focused on understanding the causes of nonresponse. Bates concluded with the following recommendations: • Leverage the survey-to-administrative-record match data housed in the new Center for Administrative Records Research and Applications. This could have great potential for studying nonresponse bias in current surveys. • Make use of the ACS methods panel for future nonresponse stud- ies. Its multimode design makes it highly desirable. • Leverage decennial listing operations to collect paradata that could be used across surveys to examine nonresponse and bias. • Select a current survey that produces leading economic indicators and do a “360-degree” nonresponse bias case study. (This ties into a recent Office of Management and Budget request on federal agency applications of bias studies.) • Going forward, think about small-scale nonresponse projects that fill research gaps and can be quickly implemented (as opposed to the tradi- tionally large-scale ones undertaken by the Census Bureau). • Expand the collection and application of paradata to move current surveys toward responsive design (including multimode data collection across surveys).

OCR for page 127
130 NONRESPONSE IN SOCIAL SCIENCE SURVEYS NATIONAL AGRICULTURAL STATISTICS SERVICE The National Agricultural Statistics Service (NASS) surveys farms, which are both establishments and, in surveys such as the Agricultural Re- source Management Survey, households. Jaki McCarthy of NASS reported at the panel’s workshop that NASS has conducted studies of its respon- dents and nonrespondents in an effort to test whether knowledge of and attitudes toward NASS as a survey sponsor had an effect on response. The agency found that cooperators have more knowledge and better opinions of NASS statistics. Other studies of the relationship between burden and response found no consistent relationship between nonresponse and burden as measured by the number and complexity of questions. In fact, the highest burden sample units tend to be more cooperative than low-burden units. Other NASS studies looking at the impact of incentives on survey re- sponse have found that $20 ATM cards increased mail response, although not in-person interview responses, and that they were cost-effective and did not increase bias. Calibration-weighting studies found that calibration weighting decreased bias in many key survey statistics. NASS is currently exploring use of data mining to help predict survey nonrespondents and determine if current patterns can be used to help provide explanatory power or if, instead, they are most useful for non- theoretical predictive power. Preliminary findings suggest that in large data- sets many variables are significantly different among cooperators, refusals, and non-contacts, but although the differences are significant, they are usually small in practical terms. Many variables are correlated, and using these variables alone is not useful in predicting individual nonresponse or managing data collection. A breakthrough procedure is to use classification trees in which the data­ et is split using simple rules and all variables and all possible break- s points are examined. In this procedure the variable maximizing the dif- ference between subgroups is selected, and a rule is generated that splits the dataset at the optimum breakpoint. This process is repeated for each resulting subgroup. The classification trees are used to manage data collec- tion and, in the process, allow an indication of nonresponse bias. By this means it is possible to identify likely nonrespondent groups that will bias estimates. Despite this research, there are still a number of important and foun- dational “unknowns,” which she summarized as follows: Is nonresponse affecting estimates? Is there bias after nonresponse adjustment? What are the important predictors of nonresponse? Can these be used to increase response? Who are the “important” nonrespondents?

OCR for page 127
APPENDIX A 131 NATIONAL CENTER FOR HEALTH STATISTICS National Center for Health Statistics (NCHS) research supports a very active survey management activity designed to reduce nonresponse. As re- ported by Jennifer Madans of NCHS at the panel’s workshop, the National Health Interview Survey (NHIS) research focuses on issues of nonresponse, with much of the research making use of paradata collected as part of the survey. NCHS uses a so-called contact history instrument, audit trails of items and interview times using the Blaise survey management platform, and analysis of the front and back sections of the survey instrument. The issues NCHS has been investigating include differences arising from reducing the length of the field period and the effort that the interviewer makes and the trade-offs between response rates and data quality. The research has found that the loss of high-effort households had minor impacts on estimates. The research also found that respondent reluctance at the first contact negatively impacts data quality. Interviewer studies have found that pressure to obtain high response rates can be counterproductive in that the pressure often leads to shortcuts and violations of procedures. These investigations have helped to develop new indicators to track interview performance in terms of time, item nonresponse, and mode. The National Survey of Family Growth has focused on paradata-driven survey management. The survey collects paradata on what is happening with each individual case. These paradata are transmitted every night, analyzed the following day, and used to manage the survey. The paradata measures include interviewer productivity, costs, and response rates by subgroup. They emphasize sample nonrespondents, the use of different procedures (including increased incentives), and identification of cases to work for the remainder of field period. To measure content effects the National Immunization Survey (NIS) has run several controlled experiments, along several lines of inquiry. In one experiment, NIS used such tools as an advance letter, screener intro- duction, answering machine messages, and caller ID (known name versus 800 number). Other experiments involved scheduling of call attempts by type of respon­ ent and nonrespondent; incentives (prepay plus promised) d to ­efusals and partials; propensity modeling for weighting adjustments; r dual frame sampling (landline plus cell phone RDD samples) and overs- ampling using targeted lists; and benchmarking results against the NHIS. Findings thus far include that the response rate showed differences when the content and wording of the screener introduction were varied; advance letters, which were improved for content, readability, contact and callback ­ information, and Website information, improved ­ articipation; a legitimate p

OCR for page 127
132 NONRESPONSE IN SOCIAL SCIENCE SURVEYS institutional caller ID improved callbacks and participation versus an 800 number; optimized call scheduling improved par­icipation; an optimized t number of call attempts by disposition type reduced costs and improved participation; and having call centers in different time zones led to im- proved contact and call scheduling. NATIONAL CENTER FOR SCIENCE AND ENGINEERING STATISTICS Work by the National Center for Science and Engineering Statistics (NCSES) centers on research to minimize nonresponse, handle nonresponse statistically, and evaluate nonresponse bias. Future research, according to Steven Cohen of the NCSES at the panel’s workshop, will focus on respon- sive designs, increased use of paradata, and nonresponse bias analysis on the National Survey of College Graduates by making comparisons to the American Community survey.