National Academies Press: OpenBook

Radiochemistry of Arsenic, by Harold C. Beard (1960)

Chapter: General remarks concerning the detailed radiochemical procedures of Section XII

« Previous: Counting techniques pertinent to arsenic isotopes
Suggested Citation:"General remarks concerning the detailed radiochemical procedures of Section XII." National Research Council. 1960. Radiochemistry of Arsenic, by Harold C. Beard. Washington, DC: The National Academies Press. doi: 10.17226/18701.
×
Page 24

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

As72 - As78 These are, very broadly, the most useful of the arsenic isotopes. As - As are produced by (p, n) or (p, y) reactions on Ge; As - As by (n, p) or (y, p) reactions on Se;As and As are fission products. Note also that As is produced by the (n, 2n) reaction on stable As while As is the (n, y) product of stable As. As has a very hard 8+ and a very prominent y peak at 0.838 MeV together with a large annihilation radiation peak, and so is easily counted. As decays by electron capture and is rather difficult to count satisfactorily because its soft y-rays are highly converted. As emits 6+ and B~ and has a good y-ray at 0.596 MeV plus annihilation radiation; these are rather close but can be resolved by y-spectrometry. As emits a hard, '-'~particle, and so is readily counted; it also has a prominent y-ray at 0.559 MeV. As is rather more difficult, since its 8~ particles are on the soft side and its y-rays are weak in intensity, the most prominent being at 0.246 MeV. As is easily counted as it emits hard B~ particles, and has a well defined, fairly hard y-spectrum. Some workers have experienced trouble with contamination in these isotopes from Cu , a 12.8h positron emitter. The annihilation peak of this isotope is very prominent, and careful y-spectrometry is needed if arsenic isotopes are to be counted by scintillation methods when such contamination is present. Fortunately the half- life of Cu is sufficiently far from those of the arsenic isotopes that resolution of decay curves is reasonably easy. As79-As81 These are all short lived isotopes. They are easily counted, since they all emit hard B~ particles. In addition, As has a prominent y-ray at 0.66 MeV. XI. GENERAL REMARKS CONCERNING THE DETAILED RADIOCHEMICAL PROCEDURES OF SECTION XII. The 21 detailed procedures which follow in section XII fall into only a few main groups, classified according to the principal means of As purification. By far the commonest such means is distillation of either AsC1j or AsBrj. The principal inter- fering element is then Ge, but this is easily removed by distilling it off first, having previously oxidised the As to As(V). Having removed the Ge, the As is then reduced to As(III) and distilled in its turn. This is the main purification method in 13 pro- cedures, numbers 1, 2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15 and 17. Solvent extraction of Asl^ into CHC1j is used in procedure 14 and into C^H, in procedure 19. Anion exchange is used in procedure 16. Precipitation of As2Sc, with removal of Ge by distillation is used in procedure 3. The preferred means for the rapid separation of As from complex mixtures is evolution of AsH, used in procedures 11, 18, 20 and 21 - the last two taking only 10s and 45s respectively. The procedures use various physical and chemical means for removing other gaseous hydrides which are evolved, (germane stannane and stibine). 24

Next: Collection of detailed radiochemical procedures »
Radiochemistry of Arsenic, by Harold C. Beard Get This Book
×
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF
  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!