ISECG.38 This mission would sustain a crew of four on the lunar surface for 28 days. Predeployed pressurized lunar surface mobility units would be positioned using SLS launch vehicles and reusable lunar ascent-descent vehicles. The crew would be launched using SLS and Orion and then rendezvous with a permanent lunar orbital facility. This facility would serve as the staging point for the crew and the ascent-descent stage, which would be augmented by a low-cost disposable deceleration stage. Scientific exploration would be conducted using surface mobility units that also operate as habitats. The exploration range would be limited to a reasonable return distance to the ascent-descent stage. Beyond the attendant lunar surface science, this DRM would demonstrate surface operations, surface habitation, and surface mobility required for partial-gravity environments where dust and other potential contaminants are present. Lunar Surface Outpost

The Lunar Surface Outpost DRM is an extension of the Lunar Surface Sortie mission and requires the deployment of long-duration surface assets. These assets would be delivered using a similar architecture of SLS launch vehicles, reusable lunar ascent-descent vehicles, a staging orbital facility, and disposable propulsion stages. The additional assets would extend the surface mission duration from 28 days to as much as 6 months. The mobile assets would allow extended sortie missions from the outpost to scientifically diverse sites, while the outpost itself would be used for scientific experimentation and testing of Mars-focused technologies, such as long-life high-capacity power generation systems and operations planning for long-duration surface stays. Asteroid in Native Orbit

The Asteroid DRM is a deep-space mission beyond cislunar space for a crew of four to a near-Earth asteroid. The asteroid for the mission would be selected on the basis of scientific interest (or relevance to planetary defense) and Earth-asteroid alignment to allow the crew to transfer to and from the asteroid within a 270-day total mission duration. An Orion vehicle, a deep-space propulsion unit, a deep-space habitation module, and a space exploration vehicle would be launched on SLS vehicles and rendezvous in LEO before the transfer to the asteroid. On arrival at the asteroid after a 60- to 130-day transit, the crew would transfer to the space exploration vehicle and perform close-proximity operations and EVAs to collect samples and perform experiments on the asteroid. After a 14-day mission at the asteroid, the crew would return to Earth in the space habitat on a 70- to 160-day journey before performing a direct entry using the Orion vehicle. This DRM features deep-space habitation capability for more than the 180 days needed for a transit to or from Mars, deep-space navigation, low-gravity foreign-body exploration, and potentially important scientific returns. Mars Moons

The Mars Moons DRM is similar to the Asteroid DRM in that it is an exploration of a low-gravity body in deep space using space exploration vehicles and EVAs for crewed exploration. The major distinguishing factor is the location of the low-gravity body. A crewed mission to Phobos and Deimos in Mars orbit would include many elements of a crewed mission to Mars but without the challenge of EDL and ascent from Mars. After departure from Earth, the mission would attain Mars orbit insertion and then use orbital maneuvering units to spend up to 60 days at Phobos and Deimos. The mission length would increase from less than 1 year for the Asteroid in Native Orbit mission to almost 2 years for the Mars Moons mission. The increases in mission duration and propulsion requirements result would require an advanced in-space propulsion system. The current design baseline is NTP, although NASA was still examining the propulsion trade space as of the end of 2013. Two space exploration vehicles and small propulsion stages for martian orbital maneuvering would be predeployed at Mars using an advanced propulsion stage. The crew would rendezvous with their long-duration, deep-space habitat and advanced propulsion stage in LEO before transferring to Mars. The habitat would need to protect the crew from the deep-space environment


38 ISECG, The Global Exploration Roadmap, 2013.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement