commercially available ammonia synthesis catalysts operate at a rate that is almost equal to that observed on the preferred facet of iron.


In summary, catalysts play a vital role in providing society with fuels, commodity and fine chemicals, pharmaceuticals and means for protecting the environment. To be useful, a good catalyst must have a high turnover frequency (activity), produce the right kind of product (selectivity), and have a long life (durability), all at an acceptable cost. Research in the field of catalysis provides the tools and understanding required to facilitate and accelerate the development of improved catalysts and to open opportunities for the discovery of new catalytic processes.

The aim of this report is to identify the research opportunities and challenges for catalysis in the coming decades and to detail the resources necessary to ensure steady progress. Chapter 2 discusses opportunities for developing new catalysts to meet the demands of the chemical and fuel industries, and the increasing role of catalysis in environmental protection. The intellectual challenges for advancing the frontiers of catalytic science are outlined in Chapter 3. The human and institutional resources available in the United States for carrying out research on catalysis are summarized in Chapter 4. The findings and recommendations of the panel for industry, academe, the national laboratories, and the federal government are presented in Chapter 5.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement