pollution problem in most of the urban areas in China. While O3 concentrations are routinely monitored over urban areas by local NEPA bureaux, few observations are being made in remote regions. An exception was the shipboard measurements of atmospheric O3 over the western Pacific Ocean.


Current research on aerosol chemistry in China is more limited than on other areas of atmospheric chemistry. Aerosol studies focus primarily on urban- and regional-scale problems. Only a few studies directly address global aerosol distributions and trends or link aerosols to climate change. Based on the information available to the panel, it appears that the importance of aerosols to climate change is not generally appreciated by researchers in China.

Wind-blown dust is believed to contribute significantly to particulate loading, especially in northern China. Aerosol measurements over China, Japan, and the northern Pacific have convincingly demonstrated that dust storms originating from central Asia are the major sources of dust, sulfate, nitrate, and other particulate matter transported to the northern Pacific.

Given the important role played by aerosol particles in atmospheric radiation, the effect of Asian dust storms on regional—as well as global—climate needs to be carefully studied. While China has programs to study the meteorological characteristics of dust storms, including the formation and transport of the storm's dust, a comprehensive program that addresses both chemical and physical properties of dust storms would be welcome.

Stratospheric O3

At least four Chinese institutions are engaged in the development of one- and two-dimensional models for stratospheric chemistry studies. Because most of the stratospheric observations and laboratory measurements are carried out in the United States and Europe, Chinese modelers do not often have timely access to these data sets. Computer facilities are also somewhat inadequate to run fully coupled two-dimensional transport and chemical models efficiently. As a result, stratospheric models in China are not as advanced as those in developed countries. In particular, lack of access to observational data is a serious limitation for the development of Chinese stratospheric models. Chinese researchers are measuring O3, NO2, and the consumption of halons and CFCs.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement