Cover Image

PAPERBACK
$49.00



View/Hide Left Panel

correlation than the essentially linear one-stage model. The lowest correlation arises from the Weibull model. This is because, unlike the one-stage or multistage models, the Weibull model allows for supralinearity at low and moderate doses, and thus admits a greater range of TD50 values.

Crouch et al. (1987) commented on the absence of observations in the upper left and lower right triangular regions in scattergrams similar to those shown here in Figure 2. The absence of points in the upper left hand region is due to the lower limit on the number of tumors observed in the exposed groups in order to demonstrate a statistically significant increase in tumor occurrence. This implies that highly toxic chemicals of weak carcinogenic potency would likely go undetected in a standard bioassay, since such agents would not yield a measurable excess of tumors at the MTD. Crouch et al. (1987) attribute the absence of points in the lower right hand region to a lack of chemicals with extremely high potency relative to their MTDs. Reith & Starr (1989a) dispute this latter conclusion on the basis that experimental design constraints preclude the observation of potencies much larger than those shown in Figure 2. (This point is explored in greater detail in section 3.2 below.) Whether or not such "supercarcinogens" exist has been recently debated by the National Research Council (1992).

3.2 Range of Possible TD50Values

Bernstein et al. (1985) noted that TD50 values calculated from bioassay data vary within a limited range about the MDT as a function of the observed tumor response. To illustrate, suppose that the probability P(d) of a tumor occurring at dose d follows the one-stage model in (2.2), and the background tumor rate P(0) = 1 - e is known to be 0.10. Suppose further that 50 animals are exposed to a single dose D = MTD and that x of these animals develop the tumor of interest. Solving the equation

leads to the estimate



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 125
APPENDIX F 125 original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution. correlation than the essentially linear one-stage model. The lowest correlation arises from the Weibull model. This is because, unlike the one-stage or multistage models, the Weibull model allows for supralinearity at low and moderate doses, and thus admits a greater range of TD50 values. Crouch et al. (1987) commented on the absence of observations in the upper left and lower right triangular regions in scattergrams similar to those shown here in Figure 2. The absence of points in the upper left hand region is due to the lower limit on the number of tumors observed in the exposed groups in order to demonstrate a statistically significant increase in tumor occurrence. This implies that highly toxic chemicals of weak carcinogenic potency would likely go undetected in a standard bioassay, since such agents would not yield a measurable excess of tumors at the MTD. Crouch et al. (1987) attribute the absence of points in the lower right hand region to a lack of chemicals with extremely high potency relative to their MTDs. Reith & Starr (1989a) dispute this latter conclusion on the basis that experimental design constraints preclude the observation of potencies much larger than those shown in Figure 2. (This point is explored in greater detail in section 3.2 below.) Whether or not such "supercarcinogens" exist has been recently debated by the National Research Council (1992). 3.2 Range of Possible TD50 Values Bernstein et al. (1985) noted that TD50 values calculated from bioassay data vary within a limited range about the MDT as a function of the observed tumor response. To illustrate, suppose that the probability P(d) of a tumor occurring at dose d follows the one-stage model in (2.2), and the background tumor rate P(0) = 1 - e-α is known to be 0.10. Suppose further that 50 animals are exposed to a single dose D = MTD and that x of these animals develop the tumor of interest. Solving the equation leads to the estimate