National Academies Press: OpenBook

Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molecular Biology (1995)

Chapter: Chapter 2 Mapping Heredity: Using Probabilistic Models and Algorithms to Map Genes and Genomes

« Previous: REFERENCES
Suggested Citation:"Chapter 2 Mapping Heredity: Using Probabilistic Models and Algorithms to Map Genes and Genomes ." National Research Council. 1995. Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molecular Biology. Washington, DC: The National Academies Press. doi: 10.17226/2121.
×
Page 25
Suggested Citation:"Chapter 2 Mapping Heredity: Using Probabilistic Models and Algorithms to Map Genes and Genomes ." National Research Council. 1995. Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molecular Biology. Washington, DC: The National Academies Press. doi: 10.17226/2121.
×
Page 26

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

MAPPING HEREDITY: USING PROBABILISTIC MODELS AND ALGORITHMS TO MAP GENES AND GENOMES 25 Chapter 2— Mapping Heredity: Using Probabilistic Models and Algorithms to Map Genes and Genomes Eric S. Lander Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology For scientists hunting for the genetic basis of inherited diseases, the human genome is a vast place to search. Genetic diseases can involve such subtle alterations as a one-letter misspelling in 3 billion letters of genetic information. To make the task feasible, geneticists narrow down genes in a hierarchical fashion by using various types of maps. Two of the most important maps—genetic maps and physical maps—depend intimately on mathematical and statistical analysis. This chapter describes how the search for disease genes touches on such diverse topics as the extreme behavior of Gaussian diffusion processes and the use of combinatorial algorithms for characterizing graphs. The human genome is a vast jungle in which to hunt for genes causing inherited diseases. Even a one-letter error in the 3×09 base pairs of deoxyribonucleic acid (DNA) inherited from either parent may be sufficient to cause a disease. Thus, to detect inherited diseases, one must be able to detect mistakes present at just over 1 part in 1010. The task is sometimes likened to finding a needle in a haystack, but this analogy actually understates the problem: the typical 2-gram needle in a 6,000-kilogram haystack represents a 1,000-fold larger target. In certain respects, the gene hunter's task is harder still, because it may be difficult to recognize the target even if one stumbles upon it.

MAPPING HEREDITY: USING PROBABILISTIC MODELS AND ALGORITHMS TO MAP GENES AND GENOMES 26 The human genome is divided into 23 chromosome pairs, consisting of 1 pair of sex chromosomes (XX or XY) and 22 pairs of autosomes. The number of genes in the 3 × 109 nucleotides of the human DNA sequence is uncertain, although a reasonable guess is 50,000 to 100,000, based on the estimate that a typical gene is about 30,000 nucleotides long. This estimate is only rough, because genes can vary from 200 base pairs to 2 × 106 base pairs in length, and because it is hard to draw a truly random sample. Although molecular biologists refer to the human genome as if it were well defined in mathematicians' terms, it is recognized that, except for identical twins, no two humans have identical DNA sequences. Two genomes chosen from the human population are about 99.9 percent identical, affirming our common heritage as a species. But the 0.1 percent variation translates into some 3 million sequence differences, pointing to each individual's uniqueness. Common sites of sequence variations are called DNA polymorphisms. Most polymorphisms are thought to be functionally unimportant variations—arising by mutation, having no deleterious consequences, and increasing (and decreasing) in frequency by stochastic drift. The presence of considerable DNA polymorphism in the population has sobering consequences for disease hunting. Even if it were straightforward to determine the entire DNA sequence of individuals (in fact, determining a single human sequence is the focus of the entire Human Genome Project), one could not find the gene for cystic fibrosis (CF) simply by comparing the sequences of a CF patient and an unaffected person: there would be too many polymorphisms. How then does a geneticist find the genes responsible for cystic fibrosis, diabetes, or heart disease? The answer is to proceed hierarchically. The first step is to use a technique called genetic mapping to narrow down the location of the gene to about 1/1,000 of the human genome. The second step is to use a technique called physical mapping to clone the DNA from this region and to use molecular biological tools to identify all the genes. The third step is to identify candidate genes (based on the pattern of gene expression in different tissues and at different times) and look for functional sequence differences in the DNA (for example, mutations that introduce stop codons or that change crucial amino acids in a protein sequence) of affected patients. This chapter focuses on genetic mapping and physical mapping, because it turns out that each intimately involves mathematical analysis.

Next: The Concept of Genetic Maps »
Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molecular Biology Get This Book
×
 Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molecular Biology
Buy Paperback | $80.00
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

As researchers have pursued biology's secrets to the molecular level, mathematical and computer sciences have played an increasingly important role—in genome mapping, population genetics, and even the controversial search for "Eve," hypothetical mother of the human race.

In this first-ever survey of the partnership between the two fields, leading experts look at how mathematical research and methods have made possible important discoveries in biology.

The volume explores how differential geometry, topology, and differential mechanics have allowed researchers to "wind" and "unwind" DNA's double helix to understand the phenomenon of supercoiling. It explains how mathematical tools are revealing the workings of enzymes and proteins. And it describes how mathematicians are detecting echoes from the origin of life by applying stochastic and statistical theory to the study of DNA sequences.

This informative and motivational book will be of interest to researchers, research administrators, and educators and students in mathematics, computer sciences, and biology.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!