National Academies Press: OpenBook
« Previous: System Considerations
Suggested Citation:"GENERAL OBSERVATIONS." National Research Council. 1993. Alternative Technologies for the Destruction of Chemical Agents and Munitions. Washington, DC: The National Academies Press. doi: 10.17226/2218.
×
Page 205
Suggested Citation:"GENERAL OBSERVATIONS." National Research Council. 1993. Alternative Technologies for the Destruction of Chemical Agents and Munitions. Washington, DC: The National Academies Press. doi: 10.17226/2218.
×
Page 206
Suggested Citation:"GENERAL OBSERVATIONS." National Research Council. 1993. Alternative Technologies for the Destruction of Chemical Agents and Munitions. Washington, DC: The National Academies Press. doi: 10.17226/2218.
×
Page 207
Suggested Citation:"GENERAL OBSERVATIONS." National Research Council. 1993. Alternative Technologies for the Destruction of Chemical Agents and Munitions. Washington, DC: The National Academies Press. doi: 10.17226/2218.
×
Page 208

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

APPLICATION OF ALTERNATIVE TECHNOLOGIES TO THE DESTRUCTION OF THE U.S. CHEMICAL WEAPONS 205 STOCKPILE the proposed cryofracture process, offers equipment simplification but with some loss of process control bemuse the several streams are processed together. This approach could lead to uncontrolled production of undesirable gas pollutants, for example. Afterburners are needed to ensure complete oxidation for all systems with waste gas production. The baseline practice is to use internal firing if additional heat is needed. Substituting oxygen for air and external heat for internal firing would minimize waste gas, but the former substitution would require demonstration. Catalytic oxidation could reduce the temperatures required, but the use of highly active catalysts is made difficult by the deactivation potential of the P, F, Cl, and S content of the agents. Molten salt systems might also be used as afterburners and for acid gas removal. Another variation would be to complete gas oxidation by supercritical water oxidation. In this case, it would be necessary to compress the gas to 3,000 psi. With use of afterburners, gas streams from any of the processes can be brought to specified levels of agent and organics destruction, which cart be confirmed by storage and certification. Thus, waste gas purity can be ensured independently of the process used. GENERAL OBSERVATIONS 1. The risk of toxic air emissions can be virtually eliminated for all technologies through waste gas storage and certification or treatment by activated-carbon adsorption. Either of these options can be combined with methods to reduce the volume of gas emissions. Agent releases from accidents in the destruction facility and releases to the atmosphere of residual unreacted agent or toxic products from equipment malfunction can all be avoided for any alternative technology by applying a dosed system concept to all gas streams leaving the facilities. That is, gas streams can be stored until chemical analysis has demonstrated their compliance with regulatory standards. The storage volume needed to handle gaseous oxidation products can be made adequate to store any accidental release of vaporized agent from the destruction facility. Large activated-carbon (charcoal) adsorbers can perform much the same function. In this case, agent and products of incomplete combustion are captured and retained on the charcoal. The amount of gas released can be greatly reduced by the use of pure oxygen in destruction processes instead of ordinary nitrogen diluted air. Waste gas can be further reduced by capturing the carbon dioxide it contains with lime, as well as capturing HCl, HF, SO2, and P2O5 , at the cost of increasing

APPLICATION OF ALTERNATIVE TECHNOLOGIES TO THE DESTRUCTION OF THE U.S. CHEMICAL WEAPONS 206 STOCKPILE the mount of solid waste produced. These techniques can be applied to all technologies. 2. There are many possible destruction processes. A wide variety of processes have been proposed to replace or augment components of the current baseline destruction system. The scope of possible modifications ranges from simply replacing one component, such as the agent combustion process, to replacing all current combustion-based processes. New components would likely require 5 to 12 years for research and demonstration, the lower figure representing the time required for construction and testing of demonstration facilities, the higher figure including research and pilot plant work as well. 3. Initial weapons disassembly and agent detoxification and partial oxidation could meet international treaty demilitarization requirements and eliminate the risk of catastrophic agent releases during continued storage. The strategy of disassembling weapons and applying liquid-phase processes to destroy agent can meet treaty demilitarization requirements. By destroying the stored agent, the risk of catastrophic agent release during storage is avoided. Final disposal of the wastes generated would be delayed until complete oxidation processes are developed. 4. There are a number of promising chemical processes for agent detoxification or oxidation. Chemical techniques could allow agent detoxification in low-temperature, aqueous systems. The reaction products could be confined and tested to determine whether further processing is needed to meet demilitarization requirements and also for suitability for release to a disposal facility or to local storage. The best results with such processes have been seen in GB destruction. Although there are laboratory leads for similar VX and mustard treatments, this work is at the early laboratory stage. The combined use of peroxysulfates and hydrogen peroxide shows promise for detoxification of agent and also for complete oxidation of its organic components. Biological and electrochemical processes might be used to further oxidize liquid wastes from detoxification processes, but they are in an early stage of research.

APPLICATION OF ALTERNATIVE TECHNOLOGIES TO THE DESTRUCTION OF THE U.S. CHEMICAL WEAPONS 207 STOCKPILE 5. Processes used in combination with an afterburner can be used to oxidize agent. Processes proposed for oxidation of agent or of products from its chemical detoxification include wet air and supercritical water oxidation, molten salt oxidation, fluidized-bed combustion, steam gasification, plasma arc (electric arc) furnaces, and molten metal baths. All require an afterburner to complete oxidation, and all are promising but would require development and demonstration. 6. There are technologies to replace the baseline metal parts furnace. Alternative technologies to destroy energetics and reliably detoxify metal parts and containers involve heating to high temperatures. Using electrically heated ovens in place of the baseline internally fired kilns would reduce the amount of flue gas produced. Molten metal or salt baths could also treat these stockpile materials. Like the combustion-fired kilns, all these approaches require the use of afterburners to ensure complete oxidation. 7. Afterburner technologies might be used to control waste gas purity. Alternative afterburner options include external heating, catalytic combustion, molten salt, or supercritical water oxidation. Afterburners can be designed to meet requirements for contaminant oxidation for both baseline and alternative processes and are essential in control of waste gas purity.

APPLICATION OF ALTERNATIVE TECHNOLOGIES TO THE DESTRUCTION OF THE U.S. CHEMICAL WEAPONS 208 STOCKPILE

Next: A Statement of Task »
Alternative Technologies for the Destruction of Chemical Agents and Munitions Get This Book
×
 Alternative Technologies for the Destruction of Chemical Agents and Munitions
Buy Paperback | $95.00
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The U.S. Army Chemical Stockpile Disposal Program was established with the goal of destroying the nation's stockpile of lethal unitary chemical weapons. Since 1990 the U.S. Army has been testing a baseline incineration technology on Johnston Island in the southern Pacific Ocean. Under the planned disposal program, this baseline technology will be imported in the mid to late 1990s to continental United States disposal facilities; construction will include eight stockpile storage sites.

In early 1992 the Committee on Alternative Chemical Demilitarization Technologies was formed by the National Research Council to investigate potential alternatives to the baseline technology. This book, the result of its investigation, addresses the use of alternative destruction technologies to replace, partly or wholly, or to be used in addition to the baseline technology. The book considers principal technologies that might be applied to the disposal program, strategies that might be used to manage the stockpile, and combinations of technologies that might be employed.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!