Processing Finger Millet

Milling

Mechanical milling is of course well known; for wheat, rice, and maize, it is a major industry. But for finger millet, this primary step in the commercial processing of a food grain is essentially unknown. Machinery for rubbing the bran (embryo) off finger millet has never been available, perhaps through a lack of interest but mainly because the grain is exceptionally difficult to mill by machine. Finger millet, therefore, is usually eaten as a whole-grain flour, and the presence of oil in the embryo means that its shelf life is short and its commercial use limited.

Finger millet seed is a challenge to mill because it is very small and because its seed coat is bound tightly to the edible part (endosperm) inside. Moreover, the grain is so soft and friable that conventional milling equipment cannot remove the outside without crushing the inside. However, farmers have long known that moistening finger millet (for about 30 minutes) toughens the bran and reduces its grip enough that it can be mechanically separated without crushing the rest.

A machine for doing this has now been developed in India. This so-called "mini millet mill" consists of a water mixer, a plate grinder, and various sifter attachments. It is a versatile device in which debranning and sizing the endosperm (into either flour or semolina) take place in a single operation. It yields fairly white products. It can also be used to process wheat, maize, sorghum, and pearl millet and will even remove the outer husk from finger millet seeds if the clearance between the grinder plates is reduced.

This machine, and others like it, could initiate a new era for finger millet as a processed grain of commerce. The flour would then have a good shelf life and could be trucked to the cities and sold in stores as are wheat, rice, and maize. Commercial horizons would open up that have never before been contemplated.*

Malting

Finger millet could be the key to providing cheap and nutritious foods for solving, at last, the malnutrition that each year kills millions of babies throughout the warmer parts of the world.

As is described elsewhere (notably in appendixes C and D), the process of germinating finger millet activates enzymes that break down the complex structures of starches into sugars and other simple carbohydrates that are easy to digest. The enzymes

*  

For more information, contact N.G. Malleshi, Central Food Technological Research Institute (CFTRI), V.V. Mohalla PO, Mysore 570 013, India.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement