Index

A

Accelerometers, 193

Accretionary environments, 73-74

Acid mine drainage, 18

Acoustic caliper, 210

Acoustic emission methods

doppler flowmeter, 171

fluid flow monitoring, 219

geothermal reservoir characterization, 200, 487-492

logging methods, 133, 169, 212-217, 227

principles, 44, 169, 199-200

televiewer image logs, 174-175, 208-211

Acoustic fluidization, 93

Adsorption, solute, 274-275

Advection in fractured rocks, 273, 282, 284, 286, 378, 384-385, 425

Aeromagnetic surveys, 490

Aitkokan, Canada, 457

Alkalinity, and groundwater age, 465-467

Alterant tomography, 192

Anisotropic systems, heterogeneous, 27

Anisotropy

aligned fractures and, 176

azimuthal, 174, 188

and detection of fractures, 172, 174

effective stress and, 410

and fluid flows, 128-129, 266-267

fracture orientation and, 133, 172

in permeability, 118, 270, 320, 410, 422

reservoir, 15

surface roughness and, 118

transmission tomography and, 192

Ankerite, 86

Anticracks, 30

Apache Leap research site, Arizona, 377-378, 458

Apertures

arithmetic average, 141

deformation, 407-413

dilatancy and, 118

distributions, 127

effective stress and, 406

epoxy castings, 108-109

and fluid flow, 48, 87, 121, 124, 129, 275, 406, 407-413



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 527
Rock Fractures and Fluid Flow: Contemporary Understanding and Applications Index A Accelerometers, 193 Accretionary environments, 73-74 Acid mine drainage, 18 Acoustic caliper, 210 Acoustic emission methods doppler flowmeter, 171 fluid flow monitoring, 219 geothermal reservoir characterization, 200, 487-492 logging methods, 133, 169, 212-217, 227 principles, 44, 169, 199-200 televiewer image logs, 174-175, 208-211 Acoustic fluidization, 93 Adsorption, solute, 274-275 Advection in fractured rocks, 273, 282, 284, 286, 378, 384-385, 425 Aeromagnetic surveys, 490 Aitkokan, Canada, 457 Alkalinity, and groundwater age, 465-467 Alterant tomography, 192 Anisotropic systems, heterogeneous, 27 Anisotropy aligned fractures and, 176 azimuthal, 174, 188 and detection of fractures, 172, 174 effective stress and, 410 and fluid flows, 128-129, 266-267 fracture orientation and, 133, 172 in permeability, 118, 270, 320, 410, 422 reservoir, 15 surface roughness and, 118 transmission tomography and, 192 Ankerite, 86 Anticracks, 30 Apache Leap research site, Arizona, 377-378, 458 Apertures arithmetic average, 141 deformation, 407-413 dilatancy and, 118 distributions, 127 effective stress and, 406 epoxy castings, 108-109 and fluid flow, 48, 87, 121, 124, 129, 275, 406, 407-413

OCR for page 527
Rock Fractures and Fluid Flow: Contemporary Understanding and Applications hydraulic, 122, 126 local, 106, 107-108, 111, 121, 124, 128, 141, 504 measurements, 121, 201 mechanical, 121, 122, 123, 124, 142 and permeability, 128 power spectrum of, 108, 109 tortuosity and, 145-146 Appalachian Mountains, 35, 74 Aquifers, 17, 18, 22, 27, 41, 74, 179, 253, 262, 262, 269-270, 276 , 280, 282, 300-301, 430 Aquitards, 378 Aragonite, 442 Arches National Park, Utah, 57, 67, 68 Archie's law, 139 Artifical fractures, 18, 177. See also Hydrofracturing Asperities. See also Roughness deformation of, 112, 114, 115, 117, 124-125 and pressure solution, 126 Atomic Energy of Canada Limited, Underground Research Laboratory, 20-21, 390-392, 479-487, 517 Austin Chalk fields, Texas, 70, 71, 173 Autocorrelation function, 103 B Baecher disk model, 337, 339, 340 Basaltic rock, 46, 61, 149-152 Bedded rocks orientation of fractures in, 172 research recommendations, 6 salt formation, 20 volcanic tufts, 19-20 Bedding-plane surfaces, 106, 118 Blob flow, 132, 512 Borehole televiewer imaging logs, 169, 174-175, 206, 208-211, 226, 229, 230, 231, 232, 461, 476 Boreholes acoustic measurements, 169, 199-200, 212-217 advantages of, 186 combined measurements, 508 cross-hole measurements, 149-152, 168, 188-196, 218, 219, 461, 469 cross-hole tests, 264-272, 288-291, 509 dilution test, 280-282 drainage, 448 flowmeter measurements, 217-219 heat mining through, 16 hydraulic testing in, 245-272, 288-291 imaging logs, 174-175, 206-212 open, 246, 265 oriented, 15 premeability, 263-264 radar methods, 185, 221-222, 224-225 reflection methods, 170, 196-199 rugosity, 227 single, 196, 245-264, 469, 470, 507-508 transmission tomography, 188-192, 198-199 vertical seismic profiling, 187-188 well logs, 2, 202-206, 507 Box-counting method, 80-81 Breccia zones, 42 Brine-filled rock, 134, 175, 198 Bruggeman-Hanai-Sen equation, 139 Buckled plates, 34 Byerlee's law, 92 Byron Salvage Yard, 27 C Calaveras fault, 77 Calcite, 55, 85, 86, 87 Canadian Shield, 20, 390-392, 479 Capture zones, 18 Carbonate formations, 86

OCR for page 527
Rock Fractures and Fluid Flow: Contemporary Understanding and Applications Caverns, 23 Cellular automata, 131 Chalk formations, fractured hydrocarbon reservoirs. 86 tracer tests in, 292-293 Chalk River Nuclear Laboratories, Ontario, Canada, 290-291 Chanels, fracture, 73, 273-274, 284-285, 383, 512 Chemical potential, 429, 441 Chemical processes. See also Mineralization; Solute transport and clay mobilization, 439-440 dissolution and precipitation, 440-442 in fluid flow, 14, 125-126, 428-429 modeling, 382-384 research recommendations, 10, 442, 500, 520-521, 523 and stress/flow/temperature relationships, 10, 523 thermodynamic, 428-429, 440-441, 490-491 and void geometry, 439-443 Chert/shale, 86 Clastic rocks, 56, 62 Clay cake, experiments in, 61, 64, 70 Clays chemical mobilization and swelling of, 125-126, 439-440 detection of fractures in, 178, 184, 198 electrical conductivity, 222 grouts, 432-433, 436, 438 mineral alteration and infilling, 191, 226, 506 overburden, 182 surface conduction, 139, 178 Claystone, 121, 122 Clear Lake Volcanic field, 490 Coal, 49, 204 Colloidal suspensions, 442-443 Colorado Plateau, 56, 70 Columbia Resin, 40 Composite topography, 107, 108 Computer simulations channelized transport, 275 rock heterogeneity and flow/transport, 282-283 tomographic image reconstruction, 297 Conjugate shear fractures, 34-35 Conoco Borehole Test Facility, Oklahoma, 188 Conservation of volume constraint, 124, 142 Construction, drainage methods, 448-450 Continuous-wave electromagnetic systems, 194 Contractional steps/structures, 76 Continuum simulation models. See Equivalent continuum simulation models Cordilleran thrust belt, 88 Core analysis, 140, 144, 201-202 Crack aspect ratio, 177 Creep, 119 Cretaceous Mesaverde group, 476 Niobrara formation, 234-235 Western Interior Seaway, 88 Critical path analysis, 147 Crystalline rocks. See also Stripa Project; Underground Research Laboratory conceptual models, 519 core analysis, 201 experimental facilities, 19, 20-21, 513-514 fracture zones in, 6, 187, 479-487, 514 hydraulic tests in, 266 hysteresis, 112, 114 in situ research facilities, 510 power spectral density, 106 stress concentrators, 40 strike-slip faults in, 78 transmission tomography, 191, 193, 222

OCR for page 527
Rock Fractures and Fluid Flow: Contemporary Understanding and Applications vertical seismic profiling, 187 well logging, 227, 228, 231 waste repositories in, 19 CSRIO Hollow Inclusion Cell, 470 Cubic law, 120-121, 123, 124, 146-147 Cutoffs, 434, 448 D Dams, 23, 125, 222, 412, 415, 420, 421, 434, 436, 438 Darcy's law, 140, 217, 407 Data processing, See also Computer simulation image enhancement techniques, 210-212 inversion programs, 224-225, 272 seismic reflection information, 173 stacking, 173 type curve analysis, 261 Dead zones, 156, 159 Decollement, 73 Defense Nuclear Agency, 5 Deformation and failure of fractures aperture size and, 24, 407-413 asperities, 112 bedding planes, 74 bulk, 411 dilatancy and, 116-118 elasticity and, 114, 119, 124, 219 electrical properties and, 142 fault interaction and, 52 faulting in porous sandstone and, 42-43 and fluid flow, 112, 142, 407-413, 419 hydraulic fracturing and, 416 hysteresis effect, 112, 114 modeling, 115-116, 419, 422 narrow zones of, 43 and permeability, 9-10, 43, 503-504 plane-strain, 70, 71 at plate boundaries, 41 pore fluids and, 92 rates, 112 shear, 9-10, 116-117, 118, 420, 422, 514 single fractures, 123 sliding, 422, 423 stress and, 104, 111-112, 411, 419-420 temperature of the rock and, 125, 422-424 toppling, 422, 423 types of, 406-407 voids, 124 volumetric, 115 Density of fractures, 105-106, 132, 176-177, 334, 343, 393 Dershowitz polygonal model, 342 Detection of fractures, 418. See also specific methods and devices borehole methods, 186-200, 224-229 core inspection, 201-202 coupled methods, 168, 180, 186, 192, 193-194, 198-199, 412, 419, 506-507 differential methods, 168 distances and, 222 elastic methods, 168-169 electrical methods, 169, 178-180 electromagnetic methods, 169, 180-185 flowmeter case studies, 230-232 fluid-flow monitoring, 219-222, 223 fracture properties useful for, 503-505 geological observations, 170-171, 186 hydraulically conductive fractures, 205, 216, 501-510 inferences from, 223 interpretation of data, 223 inversion of data, 189, 191-192, 195-196, 198-199 limitation of methods, 501

OCR for page 527
Rock Fractures and Fluid Flow: Contemporary Understanding and Applications overburden and, 180, 182, 184, 185, 186 principles, 2-3, 12 properties of interest, 222, 503-505 radar methods, 169-170, 224-225 research recommendations, 8-9, 505-507 resolution of methods, 2, 167, 175, 180, 192, 198, 220, 222 single-hole methods, 174-175, 200-219 surface methods, 172-178 types of methods, 2, 12, 167, 168-171 water-filled, 178 well logs, conventional, 170 Diagenesis and fracture permeability, 84-87 and sequential fracturing, 67 Difference tomography, 192, 221-222, 462-463, 469, 507 Diffraction tomography, 198-199 Digital borehold scanner, 206-207 Digital optical imaging systems, 212, 213 Dikes, 34, 60 Dilatancy, 116-118, 124-125 Dilating fractures. See Joints Dipmeter, 211 Directional sounding, 180, 224-225 Discontinuum models. See Discrete network simulation models Discrete fracture models, 13, 373-375, 378, 475, 515 Discrete network simulation models applications, 346-347, 350-351, 388-389 assessment of, 347-351, 373-375 clustering of fractures, 362-363, 461 concerns about, 358, 360 connectivity, 126-127, 349, 395 in continuum approximations, 351-358 equivalent discontinuum, 271, 319, 332, 367-370, 438 flow and transport models, 124, 366-367, 411 fractal approximation, 370-371, 373 fracture density component, 334, 343 fracture-mechanics-based, 363-366 fracture orientation component, 343-344 fracture size component, 344-345 geometric, 361-367, 388 geological issues in statistical representations, 336-337, 358-360 high-porosity matrix, 346-347 hydraulic behavior condition, 367-373 inverse methods, 373 iterated function system, 371-372, 374, 516 limitations, 389 orthogonal models and extensions, 338-339 parameters, 317, 340-346 percolation theory, 393-394 Poisson plane, 339-340, 363, 395 principles, 332-336, 386, 388 scale-dependent, 358-375 spatial relationships between neighboring fractures, 349, 361-367, 387 stochastic, 337-340 transmissivity of individual fractures, 345-346, 388 types, 335-336, 388 Dispersion in fractured rocks, 273, 324 Displacement. See also Seismic displacement discontinuities discontinuities, overprinted, 30 shear, 118, 137 Dissolution of solids in fractures, 440-442 Dolomite, 27, 86, 226, 327-328 Drainage, 438, 448-450 Drawdowns and fracture conductivity, 409-410

OCR for page 527
Rock Fractures and Fluid Flow: Contemporary Understanding and Applications and fracture permeability, 87 in pressure-sensitive formations, 411 Underground Research Laboratory experiment, 390-392 Drainage methods in construction, 448-450 of underground structures, 24 E Earthquakes, 415 East Bull Lake, Canada, 456 Effective medium theory, 147 Effective stress and anisotropy, 410 defined, 111 and deformation/failure of fractures, 111, 112, 419-420 determining, 410-411 distribution, 420-422 and fluid flow, 4, 119-120, 407-410, 500, 522 fluid pressure and, 14 in hydrofracture, 111, 122 and permeability, 9-10, 16-17, 87, 111, 123, 128, 407-409, 414, 420 -422, 470 sensitivity tests, 416-418 temperature and, 125, 522 and void geometry, 4, 406-425 Ekofisk field oil reservoir, North Sea, 86, 315, 420 Elastic properties and deformation of fractures, 114, 119, 124 and permeability, 503-504 and seismic wave propagation, 133, 138, 172-178, 504 stiffness, 135-137, 138, 504-505 Electrical detection methods applications, 178, 179-180 for fluid flow, 220 imaging systems, 169, 205, 211 principles, 178-180 resistivity tomography, 169 resolution, 220 types, 169, 179 Electrical properties borehole enlargement/alteration, 227-229 bulk, 138-140 and detection of fractures, 178-180, 191 hydraulic properties and, 140-146, 148, 220, 504 measurement, 142-143, 169, 178-180 and porosity, 138-140, 148, 220 Electromagnetic methods costs, 181 flowmeter, 171 principles, 180-182, 220 profiling and sounding, 169, 181 resolution, 220 tomography, 169, 286 Engineered structures, stress-flow coupling and, 9-10 Engineering uncertainties, 443-445 Equivalent continuum simulation models applications, 390-392, 514 assessment of, 331-332 continuum approximations, 310, 319-322, 351-356, 379, 380, 384, 385 , 387-388, 391-392 discrete network models in, 351-358, 367-370, 386, 412, 514 dual-porosity, 324-328, 380-381, 411, 517 fluid flow component, 322-323, 324-327, 351-356 limitations, 387 parameters, 317 percolation theory, 354-356, 395, 517 principles, 514, 516 single-porosity in deterministic framework, 322-324, 386, 411, 412

OCR for page 527
Rock Fractures and Fluid Flow: Contemporary Understanding and Applications solute transport component, 323-324, 327-328, 356-358, 517-518 stochastic continuum, 328-331, 386, 387-388, 412, 514 types, 321 Underground Research Laboratory Drawdown Experiment, 390-392 Excavations and deformation of fractures, 19-20, 407 drainage, 448 foundation, 434, 436, 438 underground, 24 Explosives, 193, 22 Extensional steps/structures, 55-56, 75, 76, 77, 476 Extraction of fluids, 4, 14, 16-17, 407 F Fanay-Augeres mine, France, 337, 352-353, 354 Faulted joints, 30, 32 Faults. See also Jointed faults; specific faults bedding interface, 75 detachment, 70-71, 73 at dikes, 60 dilational wave propagation, 93 domains, 77 en-echelon, 52, 54-56, 74-76 extensional steps, 55-56 flaws and, 59 fluid flow and transport in, 73-74 friction on, 44, 55, 73, 92 formation, 42-43, 50-51, 62, 74 geometry, 48, 52, 70, 72-73, 361 in granite, 43-44, 51, 59-60, 61, 62, 63 hydraulic properties, 61-62, 72, 73 identification and measurement, 48, 195 imbricate, 73 interaction and linkage, 42, 52-56, 71-72, 74-77 at joints, 51, 60 listric, 70-71 in massive rocks, 61 in metamorphic rock, 59-60 modeling, 52, 54, 70 networks, 70-71, 74 nonconductive (sealing), 62, 389 normal, 70-72, 74 paleomagnetic analysis, 71 permeability, 55-56, 62, 484-487 propagation, 42, 44 reverse movement, 55 rotation, 72 San Francisco Bay Area, 77, 79 in sandstone, 42-43, 60-62 in sedimentary rock, 59, 60-61 semihorizontal, 187 sets, 49-51, 70-77, 175 single small, 48 slip-direction record, 32 slip on, 42, 44, 49-50 spacing, 71-72, 74 stepover zones, 52, 54, 74 stress fields, 32-33, 40-41, 59 strike-slip, 41, 51, 74-77, 78 subhorizontal, 73 through going surfaces, 31-32 thrust, 72-74, 88, 483, 485-486 tunneling through, 24 vertical seismic profiling, 187 in volcanic rock, 60 zones, 24, 48, 51, 58-63, 64, 74, 93, 187 Feeler guage, 121, 147 Felsite, 26, 488-489 Fenton Hill, New Mexico, 456 Fickian dispersion, 273, 282, 284, 286 Field tests/methods. See also Hydraulic tests; Tracer tests; specific case studies design, 3, 518 in fault zones, 62

OCR for page 527
Rock Fractures and Fluid Flow: Contemporary Understanding and Applications of hydrocarbon productive capacity, 477-478 and model parameterization, 3, 518 research recommendations, 506, 518, 521-523 tracer tests, 276-282 Filtration, for proppants and grouting, 431 Fingers/fingering, 130, 131, 132, 154, 155 Finnsjön fracture zone project, 303-304, 457 Flaws and fault zones, 59 and fracture initiation, 35-42, 44 and tensile stresses, 42 Flocculating agents, 432-433 Flow. See Fluid flow in fractures Flow and transport models. See also Discrete network simulation models; Equivalent continuum simulation models applications, 13-14 analysis of, 257-261, 309 calibrations, 318 capture zone boundaries, 18 channelization, 139, 141, 143-144, 284-285, 383-384 chemical processes, 382-384, 441-442 classification of, 316-317 complex hydrogeological systems, 375-385, 412 conservation of volume constraint, 124 contaminant transport, 7, 311 coupled flow-deformation, 419 coupled heat-flow-stress, 425-426, 523-524 coupled stress-flow, 9 development process, 307-319 dispersivity of rock mass, 324, 356-358 dissolution and precipitation of solids, 441-442 double porosity, 259, 300, 309, 327-328, 384, 491-492 electric current transport, 141 field measurements and, 303-304, 308-309 flow geometry, 252-259, 383-384, 474 fractal-like concepts in, 77, 141, 256-257, 259, 317, 361 geothermal reservoirs, 492-493 in granular media, 6 grouting, 438-439 hierarchical structure of fractures in, 361, 363-364, 365-367, 389 , 516, 517 hydraulic effects, 138, 508 hydraulic tests in boreholes, 244, 252-261, 269-272, 290-291, 508-509 hydrofracturing, 122, 418-419 hydrogeological simulation, 307-319, 412 hydromechanical, 412, 413 inferences about fractures, 311-315 laboratory, 311 local-scale, 391-392, 460-463 multiphase, 7, 380-382, 512-513, 517 multiple boreholes, 269-272, 303-304 network, 124 parallel-plate, 126, 141, 512 parameter estimation, 13, 259-261 percolation, 111, 124, 128-131, 393-394, 517 permeability, 121, 143-144, 322, 351-354, 380-381, 512 phase structure, 128-129 regional-scale, 391-392, 464-468 research recommendations, 6-7, 9, 285-286, 508, 510-514, 517-519 single boreholes, 252-261 in single fractures (cubic law), 120-121, 123, 124, 283 single-phase, 317

OCR for page 527
Rock Fractures and Fluid Flow: Contemporary Understanding and Applications single porosity transport, 323-324, 463 subsurface flow, 411-413 tracer test analysis, 244, 282, 284, 293, 312, 324 uncertainty, 318 unsaturated zones, 376-380 volume averaging, 321, 331-332, 384, 387 wells, 310, 412, 413 Flowmeters acoustic doppler, 171 electromagnetic, 171 heat pulse, 171, 217, 218, 230-232 high-resolution, 217-219 in hydraulic tests, 246 impeller, 205 permeability measurements, 226 surveys, 230-232, 461 Fluid conductivity log, 170, 205 Fluid flow in fractures. See also Flow and transport models; Hydraulic properties; Permeability aperture of fractures and, 48, 87 characterization, 2, 12 chemistry of, 14, 125-126 in clays, 121, 122 contact areas, 383-384 continuum properties, 351-356 critical necks, 115, 120, 124, 126, 512 deformation and, 112, 114, 419 diagenesis and, 87 dynamic conditions, 130-132 effective stress and, 119-120, 407-410, 500 elasticity and, 114-115 faults, 73-74 in fractured porous medium, 259, 292-293 friction factor, 121-122 geometry, 252-259, 260-263, 383-384 in granular media, 6 gravity-driven, 130-132, 153-155, 430 infiltration, 153-155 interaction zones and, 54 interface changes, 429-430 irreducible, 120 isothermal, 384 issues, 500 laminar, 121, 134 linear, 252, 253-254, 256, 257, 258 linear-radial, 256 measurement, 121 monitoring methods, 219-222, 223, 230-232, 465 multiphase, 7, 376, 380-382, 426, 512-513, 517 normal stress conditions, 118-124 numerical models, 9, 13-14, 18 one-dimensional, 254 oscillatory behavior, 378, 513 percolation theory, 354-356, 393-394, 395 phase changes, 376-377, 426-429, 442, 512-513 phase displacement, 512-513 pressure gradient, 122-123 pulsation, 132 radial, 252, 253, 254, 255-256, 257, 258, 259, 260, 262, 263, 292-293 radial-spherical, 254-255, 260 repositories, 20 Reynold's equation for, 140 shear stress conditions, 124-125 single-phase, 118-126, 147, 317, 384, 511-512 spherical, 252, 255, 257, 258, 261 static and quasi-static conditions, 127-130 steady state, 321, 378 stress and, 9-10, 118-126, 411-413 thermal effects on, 125-126 thermoelasticity and, 424-426 three-dimensional, 353 tortuosity and, 119-120, 121-122,

OCR for page 527
Rock Fractures and Fluid Flow: Contemporary Understanding and Applications 123, 124, 126-127, 144, 145-146, 156 transient, 323 two-dimensional, 253, 259 two-phase, 7, 127-132, 378, 517 in unsaturated zones, 376-380 viscous drag, 121, 407 void geometry and, 2, 12, 112, 120, 121, 147, 500 Fluid pressures and aperture changes, 130, 407-413 capillary, 380 density of fractures and, 177 and effective stress, 14 and fracture initiation and growth, 415-416 gradients, 122-123 and rate of flow, 122-123 reservoir, 23 stress sensitivity tests, 416-418 thrust faults and, 73 Fluid replacement log, 170 Fluid storage structures, underground, 24-25 Fluids. See also Pore fluids Folded rock layers, 35 Formation microscanner, 169, 205, 211 Formation of fractures. See also Hydraulic fracturing; Hydrofractures basin subsidence and, 88, 89 crustal, 446-447 fault zones and, 60, 62 flaws and, 35-42 fluid pressures and, 413-426 growth, 414, 415-416 initiation, 35-42, 313, 364, 415-416 internal structures and, 42-44 mechanisms, 1, 2, 11, 33-35, 501-503 models, 364, 418-419 networks, 52-56 propagation, 35, 40, 42-44, 66, 413, 414, 418-419, 446-447 in sandstone, 62, 88-91 sets of fractures and, 63-77 shear zones, 502 slow burial and88 stress concentration and, 35-42 Fractal analysis, 77, 80-81, 82, 108, 141, 361, 373 Fractal geometry, 106, 256-257, 287, 361, 370-371 Fracture formation. See Formation of fractures Fracture-mechanics. See also Formation of fractures geometric models based on, 363-366 in hydraulically significant fractures, 501-503 Fracture networks/systems blocks, 367, 368 connectivity, 126-127, 349, 395, 410 faults, 70-71, 74 formation, 52-56 hydraulically conductive, 2, 11-14, 315, 381, 501-510 induced changes to, 405-406 see also Deformation; Effective stress; Extraction of fluids; Hydraulic fracturing; Hydrofracturing; Injection; Mineralization models, 4, 7, 81, 83, 381 see also Discrete network simulation models multiphase flow in, 381 multiple-joint, 67 origin and development, 7-8, 11 permeability, 177 prediction and control of changes, 4, 14, 519-524 research recommendations, 7-8 semihorizontal, 179-180 shear zones, 360-361 stochastic, 286

OCR for page 527
Rock Fractures and Fluid Flow: Contemporary Understanding and Applications Fracture patterns cross-cutting, 64 defined, 12 extrapolation of, 77-81 in Frontier Formation sandstones, 88-91 hydraulically significant, 502 mechanical analyses, 34 multiple-fault, 70-77 multiple-joint, 63-70 polygonal, 64-66, 311, 337, 339-340, 341, 342, 263 Fracture properties. See also specific properties detection-related, 222, 503-505 fluid pressures and, 413-426 models, 418-419 scale-dependent, 360-361 scaling up of, 10, 77-81, 287, 503 Fracture Research Investigation, 296-302 Fracture sets faults, 49-51, 175 in Frontier Formation sandstones, 88-91 modeling, 361 multiple-fault patterns, 70-77 multiple-joint patterns, 63-70 physical characteristics, 48-51, 63-77 Fracture zones alternating permeable/impermeable, 24 in crystalline rocks, 187, 479-487 cutoffs, 434 defined, 12, 471 detection of, 174-175, 187, 196 dip estimates, 180, 182 fault, 24, 48, 51, 58-63, 64, 74, 93 Finnsjön project, 303-304 index, 471-473, 508 joint, 56-58, 59, 60 low-dipping, 479-487 orientation, 196 semihorizontal, 182, 184 subhorizontal, 174-175, 215 subvertical, 17, 215, 482, 485-486 in topographic lows, 17 well tests, 13 Fractures. See also Faults; Fluid flows in fractures; Joints; other types of fractures characterizing, 2, 501-510 classification, 30-33 data sets, 81 definition, 11, 30 engineering-related problems, 1, 14-25 importance of, 1, 11 interdisciplinary approach to study of, 500-501 locating, see Detection of fractures parallel, see Fracture sets size/scale, 1, 344-345 Frictional wear surfaces, 106 Frontier Formation, 44-45, 88-91 G Geological observations, 170-171, 315 Geometry of fractures. See also Fracture patterns; Void geometry apertures, 48, 67, 87, 407-413 clustering of fractures, 362-363 crack tips, 39, 40, 56, 58, 415 detection methods, 178, 508 faults, 48, 70-71, 72-73 and fluid flow, 381, 511 fluid pressure changes and, 407-413 hydrofracturing and, 10 inferences about, 313, 508 issues, 500 joints, 44-48, 52, 56, 63-64 models/modeling, 315-316, 364-366, 381, 418 orientation, 15, 67-70, 172, 185, 186, 343-344, 500 phase, 127-132 polygonal, 33-34

OCR for page 527
Rock Fractures and Fluid Flow: Contemporary Understanding and Applications formation, 34, 44, 61 geometry, 44-48, 52, 56, 63-64 in granite, 46-48 hydraulic conductivity, 66-67, 70 interaction and linkage, 52, 67 in isotropic rock, 64 in layered rock, 44-45, 48 in massive rock, 46-48 modeling, 48, 60, 67, 33-36 in mud, 65 orientation, 64, 67-70 parent, 56 polygonal patterns, 64-66 propagation, 42, 56, 58, 66 in sandstone formations, 48, 56-58, 59, 70 sets, 48-49, 51, 52, 63-70 sheared, 118 single, 44-48 spacing of, 48-49, 50, 51, 56, 58, 66-67 strata-bound, 45 stress fields, 32-33, 41 surface features, 31-32, 33, 106 thermal stresses and, 64-66 trace lengths, 46-48, 52 zones, 56-58, 59, 60 in volcanic rocks, 45-46, 61, 65, 66 K Karst, 406 Kelvin rheology, 137 L Laboratory results, scaling up, 10, 287, 511-512 Lac du Bonnet batholith, 390-392, 479-487 Lava beds, 41, 46, 64-66 Layered rocks faults in, 60 joints in, 44-45 Le Chatelier's principle, 441 Levy-Lee model, 361 Limestone formations, 86, 193 Linear flow method, 119 Little Coal Creek outcrop, 89 Loess, Quaternary, 27 Logs/logging. See also Well logs acoustic waveform methods, 133, 212-217 advantages and disadvantages, 200 applications, 200, 507 imaging, 206-212 induction, 220 fluid-replacement, 218-219 M Malpasset Dam, 415 Mapping of fractures, 460-461 Massive rocks/formations, 46, 61, 447, 469 Mathematical models. See Discrete network simulation models; Equivalent continuum simulation models; Models/modeling Maxwell rheology, 137 Mechanical analyses, fracture prediction with, 41 Metal injection tests, 108, 110, 111 Metamorphic foliations, 60 Methatetical-precipitation-type solutions, 433 Microcracks, en-echelon dilating, 43-44 Microresistivity logs, 204-205 Mineralization. See also Chemical processes cement bridges, 87 fillings, 31, 33-34, 54, 55, 118, 484 and fluid flows, 383, 512 modeling, 383, 441-442 and permeability, 84-87, 125, 500 precipitation and dissolution in fractures, 14, 17, 24, 58, 74, 389 , 440-441, 500

OCR for page 527
Rock Fractures and Fluid Flow: Contemporary Understanding and Applications research recommendations, 500, 521 temperature and, 440-441 and void geometry, 118, 126, 500 Mining/mines, 18, 22-23, 125, 220, 420, 440 Mirror Lake, New Hampshire, research site, 456, 459-469, 514, 517 Mismatch length scale, 108, 111, 118, 119 Mixed-mode fractures, 30 Model I fractures. See Joints Models/modeling. See also Discrete network simulation models; Equivalent continuum simulation models; other specific models applications, 7, 9, 13-14, 310-311 asperity, 115 assessment of, 412-413, 523-524 averaging properties in, 321, 331-332, 380, 383, 387 boundary-element based, 419 calibration of, 318, 323 cellular, 418-419 classification, 316-317, 386 computational requirements, 515 conceptual models, 3, 4, 6-7, 13-14, 141, 307-309, 310-316, 367-368, 375-377, 380-382, 385-386, 391-392, 425, 474-475, 508, 510-514, 516 , 517, 518-519 coupled deformation-flow, 419 coupled heat-flow-stress, 425-426, 523-524 data collection requirements, 516 deformation and failure, 115-116, 419, 422 development, 3, 4, 14, 385-386, 510-511 errors, 13, 260-261, 511 faults, 70 fracture networks, 81, 83 geomechanical, 112, 310 geometry of fractures, 315-316 geostatistical, 387-388 heat transfer in fractured rocks, 384-385 heuristic, 364 hybrid, 351-358 in situ experiments and, 518 inverse methods, 272, 373, 516 inversion techniques, 189, 191-192, 195-196, 198-199, 369-370 iterated function systems, 516 joints, 48, 56, 58, 67, 336 kinetic, 383 Levy-Lee, 362 linear exchange, 383 lumping/equivalencing in, 418, 419, 515-516 mathematical constructs, 3, 9, 13, 257-258, 307-309, 316-319, 351-358, 373-375, 514, 516, 523-524 multiple continuum models, 514-515 nearest-neighbor, 362 neural network, 373 numerical, 6-7, 9, 13-14, 18, 56, 58, 70, 118, 126, 128-129, 180, 270-272, 290-291, 321, 379, 386-387, 393-394, 475, 514-519 overburden effects, 180 parameter estimation, 3, 259-261, 271-272, 472, 517 parent-daughter, 362 pipe, 335-336 principles, 307-309 recommendations, 6, 9, 285-286, 379, 387-388, 512, 513, 519-519 research issues in, 81, 83 resolution of detection methods, 180 San Andreas fault zone, 92-93 scaling relationships, 310, 358-375, 381, 383, 394 seismic properties of fractures, 132, 133-134, 150-152 shear displacement, 118 single fractures, 6, 13, 282-284, 373-375, 511-512, 515, 517

OCR for page 527
Rock Fractures and Fluid Flow: Contemporary Understanding and Applications skin effects, 264 stepover zones, 77 stress fields, 52, 54, 125 terranes, 67 tomographic data, 189, 191-192, 195-196, 198-199 uncertainty in, 318, 439 validation, 518 voids, 111 war zone, 362 wave propagation, 217 well logs and, 203, 204, 324-325, 371 wellbore storage, 264 Mohr-Coulomb faulting theory, 92 Monterey formation, 442 Montmorillonite gouge, 92 Monzonitic gneiss, 290-291 Moye formula, 260 Mud, 65, 414, 478-479 Mudcake, 204-205 Multiwell Experiment Site, Colorado, 87, 407-409, 457, 475-479 N Network simulation models. See Discrete network simulation models Nevada Test Site, 457 Niagara Falls, New York, 457 Nuclear Energy Association, 469 Nuclear Regulatory Commission, 5 Nuclear waste, 18-21, 193, 375, 376, 390, 422, 424, 428, 442-443, 479, 513, 514 Numerical models/modeling. See Models/modeling O Oceanic crust, 53 Ohm's law, 140 Oil-filled rocks, 175 Opening-mode fractures, 34-35, 42, 52, 58, 67. See also Joints Optical methods, 105, 212, 503 Oracle site, Arizona, 288-289, 329-330, 456 Organization for Economic Cooperation and Development, 469 Overburden and detection of fractures, 180, 182, 184, 185, 186 mapping of, 185 pressure, 410-411 P Packer(s) equipment, 286, 470 placement, 296, 298 sleeve, 434 tests, 185, 217, 218, 226, 244-245, 246, 262, 265, 367, 461, 463, 483, 507 Paleomagnetic techniques, 71 Pelitic rocks, fault zones in, 64 Perched zone, 378 Percolation fracture connectivity and, 410 invasion, 129, 130 modeling, 111, 124, 129-131, 517 theory, 128, 354-356, 393-394, 395 two-dimensional network, 128 Permeability, matrix, 111, 500, 512, 517 Permeability of fractures. See also Fluid flow in fractures anisotropy in, 118, 270, 320, 410, 422 aperture of fractures and, 67 clay-fluid interactions and, 125-126 compressional regions, 55-56 density and, 177 deformation and, 9-10, 43, 503-504 at depth, 84 diagenesis and, 84-87 dilatancy and, 124-125

OCR for page 527
Rock Fractures and Fluid Flow: Contemporary Understanding and Applications drawdown behavior and, 87, 463 effective stress and, 9-10, 16-17, 87, 111, 123, 128, 407-409, 412 , 414, 420-422, 470 fault zones, 62, 484-487 and formation factor, 143-144, 145 interaction of faults and, 54-56 large-scale, 352-353 in lava beds, 67 measurement of, 119-120, 144, 226 mechanisms promoting, 84 mineralization and, 84-87, 125, 440, 500 models/modeling, 84, 121, 143-144, 322, 351-354, 380-381, 512 networks, 177 and petroleum reservoirs, 15 phase changes and, 428 seismic properties and, 12, 92, 138 of single fractures, 119 skin effects, 261, 263-264, 417 structures and, 156-159 thermal gradients and, 125 tube waves and, 216 void geometry and, 119, 500 Petroleum reservoirs. See Hydrocarbon reservoirs Photoelectric transformers, 206 Piceance Basin, 475-479 Pierre Shale, South Dakota, 457 Piping, 23 Planar fractures, 376-377 Plate boundaries, deformation along, 41 Plumose texture, 31-32, 33 Plutons, 67, 209 Pore fluids, in San Andreas fault, 92-93 Pore pressures, 15-16, 22-23, 87, 92, 185, 407, 410, 411, 415 Poroelasticity, 407 Porosity of fractures defined, 144 for discontinuous systems, 357 electrical conductivity and, 138-140, 148, 178 fracture density and, 177 and hydraulic conductivity, 67, 357 indicators, 86 modeling, 322-328, 357 Porous medium behavior, 322-328, 380, 383, 502 Power spectral density, 106 Power spectrum for texture, 105-106, 108, 109, 118 Precipitation of solids in fractures, 440-442 Pressure. See Fluid pressures; Pore pressures Pressure solution surfaces, 30, 126 Probability density function for heights, 105-106 Process zone, 219 Profilometry, 105, 503 Propagation of fractures. See Fracture formation Proppants/propping, 416, 431, 448 Pull-aparts, 31, 74 Pyrite, 85, 86, 139 Q Quadrant flow method, 119 Quartz, 86, 126 R Radar acoustic doppler flowmeter, 171 borehole, 8, 170, 193-194, 196-198, 224-225, 469 directional, 224-225, 461, 469 fracture detection with, 182-185, 193-194, 196-198 ground-penetrating, 169, 182-185 Site Characterization and Validation Project, 469-475 tomography, 193-194, 221-222, 469, 506-507 Radial flow method, 119

OCR for page 527
Rock Fractures and Fluid Flow: Contemporary Understanding and Applications Radio imaging methods, 194-195 Radioactive waste. See Nuclear waste Red Gate Woods, Illinois, 456 Reflection seismology azimuthal amplitude variation with offset, 176 costs, 177-178 cross-hole, 168, 188, 196 dim spots, 173-174 oil industry applications, 173, 175, 234-235 P-wave, 168, 172, 173-176, 187, 505 principles, 172-173, 225, 505 research recommendations, 505-506 S-wave, 168, 172, 174, 176-178, 188 single-hole methods, 8 surveys, 8, 173, 175, 176, 177, 461 tomographic inversion and, 198-199, 462, 505 Reflectivity. See also Radar; Reflection seismology transmission tomography and, 198-199 Reliability and risk analysis, 443-444 Relief fractures, 477 Remote compressive loads, 42 Remote sensing methods, 175, 186-200, 220. See also specific methods Research recommendations chemical processes in fractures, 10, 500, 520-521, 523 conceptual models, 6-7, 511-513, 518-519 continuum approximations, 332 detection of fractures, 8-9, 505-507 electromagnetic surveys, 505 field tests, 506, 518, 521-523 fluid flow and transport, 6-7, 9-10, 378, 379, 502, 512, 513 fracture zone indices, 508 geophysical methods, 444, 505-507 heat transfer, 385 hydraulic tests, 509 hydrofracturing, 522 geostatistical models, 387-388 grout injection in fracture systems, 522-523 in situ facilities/experiments, 5-6, 503, 505, 510, 514, 518, 521-522, 524 induced changes to fracture systems, 444 joints, 58 laboratory studies, 520-521 logging devices, 507 mathematical models, 523-524 mineralization in fractures, 444, 523 numerical models, 9, 379, 516-519, 523-524 origin and development of fracture sytems, 7-8, 44, 502-503 oscillatory flow behavior, 378, 513 permeability of fractures, 520 properties of fractures and matrix, 504 reflection seismography, 505 seismic surveys, 505 shear-wave propagation, 504, 505 solute transport, 285-286, 332, 517-519 stress-flow relationships, 9-10, 520, 521-522 target agencies and groups, 5 tracer tests, 285-286, 509, 517 unsaturated fractured rocks, 379 void geometry characterization, 503-504 waste isolution and treatment, 10 Reservoirs, fractured characterization of, 41-42, 173, 205-206, 430, 475-479, 487-492 and earthquakes, 415 fluid flows, 309, 407-410, 411-412, 491-492 fluid production in, 420

OCR for page 527
Rock Fractures and Fluid Flow: Contemporary Understanding and Applications geothermal, 16-17, 26, 200, 205-206, 380, 384, 422, 424, 426-428, 487-492 grout curtains and blankets, 436 hydraulic fracturing in, 415-416 hydrocarbon, 6, 15-16, 84, 86, 87, 144, 173, 315, 380, 407-409, 415 , 422, 426, 428, 429-430, 475-479 idealization/simulation of, 325-327, 384 mineralization in, 84, 86, 490-491 models, 309 permeability, 87 phase changes in, 426-427 pore pressures, 87 shear-wave anisotropy in, 188, 233-235 slope stability, 23, 420 surface storage, 23 water coning, 429-430 water-supply, 17, 23 Resistive formations, 193, 195 Reynold's equation for fluid flow, 140 Rock slopes, natural and artificially cut dam abutment, 415, 420, 438 failure modes, 419-420 flow under, 412 fractures in, 22-23 stability, 25 Roughness, fracture surface and anisotropy, 118 and deformation, 112 and fluid flows, 121-122, 124 friction factor, 121-122 measurements, 105, 107, 111 and solute transport, 126 Rubblized zones, 201 S Safety factor design, 443 Salt formations, 20, 67, 68, 193, 198 Saltwater intrusion, 430 San Andreas fault, 77, 79, 92-93 San Francisco Bay Area fault patterns, 77, 79 San Gregorio-Hosgri faults, 77 Sandbox experiments, 70, 72 Sandstones Entrada, 40, 57 fault formation in, 42-43, 60-61, 62 fracture patterns in, 40, 88-91 Frontier Formation, 88-91 gas reservoir, 407-409 hydrocarbon reservoirs in, 86, 475-479 joint formation in, 48, 56-58, 59, 70 mineralization of fractures in, 85, 86 porous, 40, 42-43, 62, 143, 198 stress concentrators, 40 Satellite imaging, 186 Saturation/pressure relationships, 129 Scale/scaling issues in discrete network simulation models, 358-375, 394 fracture properties, 10, 77-81, 287, 360-361, 503 geometry of fractures, 81, 287 hydraulic properties, 81, 287 in hydrogeological simulation models, 385, 412-413 laboratory results, 10, 287, 511-512 relationships in models, 358-375, 381, 383 size/scale of fractures, 1, 344-345 universal scaling law, 394 Schist, fluid flow and transport in, see Mirror Lake Schlumberger sounding, 179-180 Schmidt net, 343-344 Seams, 31 Sedimentary rocks clay-bearing, 114, 119 density of fractures, 177 detrital, 40 faults in, 59 flow in, 119 fracture growth in, 415, 418-419

OCR for page 527
Rock Fractures and Fluid Flow: Contemporary Understanding and Applications hydrocarbon production from, 177, 475-479 hydraulic tests in, 266 hysteresis effect, 114 in situ research facilities, 510 joints in, 44, 46 power spectral density, 106 stress concentrators, 40 transmission tomography, 191 Seepage stresses, 22, 407 Seismic displacement discontinuity model, 134-135, 137-138, 504 theory, 149-152, 504 Seismic properties. See also Shear waves attenuation, 134, 147-148, 188 discrete effects, 134-138, 148 and hydraulic properties, 138 media models, 132, 133-134 and permeability, 12, 92 predictive capabilities, 469-475 propagation of energy, 2, 12, 15, 504 velocity, 132, 133, 135, 137, 147-148, 188 Seismic survey methods. See also Reflection seismology in hydrocarbon exploration, 15 passive, 490 tomography, 193, 194, 462, 507 vertical seismic profiling, 134, 168, 187-188, 462 Vibroseis method, 490 Self-similar systems theory, 139 Sellafield, England, 458 Semivariogram analysis, 77 Serpentine formations, 86 Shale, 15, 27, 45, 53, 86 Shear fractures. See Faults Shear stress and dam failure, 415 and deformation, 111, 112, 415 displacement, 116 and fluid flow in fractures, 124-125 shear displacement under, 137 and void geometry, 116-118 Shear waves anisotropy, 188, 233-235 attenuation, 188 logging tools, 217, 223 propagation, 8, 233-234 reflection seismology and, 168, 172, 174, 176-178 shadow zone, 219-220 splitting, 188, 217, 223, 234-235, 504 velocity, 188 Shear zones formation of, 313, 502-503 similarity of, 360-361 Shearing-mode fractures, 42, 58 Sierpinski gasket (modified), 287, 370-371 Sierra, Nevada, California, 46-48, 51, 185 Silo field, 234 Siltstone-sandstone beds, 44, 45 Simplon Tunnel, 24 Simulated annealing, 369-370 Site Characterization and Validation Project. See Stripa Project Skin depth measures, 182 Skin effects, 261, 263-264, 296, 299, 417 Slant-Hole Completion Test, 476, 477 Slickensides. See Striations SLINGRAM, 182 Slip and formation of faults, 42, 44, 71 hydraulic fracturing and, 418 length of faults and, 50 pore fluids and, 92 shear heating during, 93 spacing of faults and, 49-50 Slopes. See Rock slopes Snell's law, 191 Spalling, 208 Solids. See also Grouting; Proppants added to fractures, 430-439 alteration of, 442 colloidal suspensions, 442-443

OCR for page 527
Rock Fractures and Fluid Flow: Contemporary Understanding and Applications dissolution and precipitation, 440-442 phase changes, 442 redistribution by chemical processes, 439-443 Solute transport. See also Chemical processes; Flow and transport models adsorption, 274-275, 282, 284 advection, 273, 378 channelized, 273-274, 284-285 dispersion, 273, 324 flux approach, 286, 319-321, 380 fracture channels, 273-274 multiphase flow, 156-159, 380-382 nonaqueous-phase liquids (NAPL), 381-382, 429 processes of interest, 272-275, 382 radionuclides, 443 research recommendations, 517-518 tracer tests, 272-275, 282, 284-285 in unsaturated zones, 376-380 velocity, 511 void geometry and, 126-127 Stacking, 173 Statistical modeling continuum transport, 359 of void geometry, 108, 111, 146 Stepover zones, 52, 74, 77 Stiff loading frames, 44 Stiffness, fracture, 135-137, 138, 504 Stochastic methods, 81, 321, 328-331, 337-340, 387-388, 475, 514, 515 Stoneley waves, 138, 214-215 Strain gauges, 417-418 Stress concentration/distribution en-echelon fractures, 54-56 at fault zones, 59 at flaws, 35-42 fracture geometry and, 52, 54, 104-118, 185, 503 and fracture initation, 35-42 fracture origin and, 118 at plate boundaries, 41 and pressure solution, 126 Stress. See also Effective stress; Shear stress and deformation, 104, 419-420 in faults, 32-33, 52, 54 and fluid flow in fractures, 9-10, 118-126 and geometric properties of fractures, 104-118 and hydrological properties, 104 intensity factor, 39, 42, 415 in joints, 32-33, 52 measurement, 414, 470 modeling, 52, 54 normal, 112, 117, 118-124, 137, 420 origin of, 1 regional fields, 40 seepage, 22, 407 tensile, 35-36, 42 thermal, 4, 14, 33 and void geometry, 4, 112-116, 146-147 Striations, 32, 33, 118, 476 Stripa Project, Sweden, 187, 190, 196, 198, 225, 294-295, 313, 314 , 335, 337, 339, 341, 367, 368-369, 370, 371, 428, 456, 469-475, 508, 513 Structures. See also Engineered structures; Transport structures; Underground structures; specific types of structures and fracture permeability, 156-159 fractures and, 1, 22-25 and solute transport, 156-159 two-phase, 156-159 Stylolites. See Pressure solution surfaces Subsurface fluid compartments, 177 Superfund sites, 27 Surface. See also Roughness conduction, 139 fracture orientation observations, 186 Swedish Nuclear Fuel and Waste Management Company, 517

OCR for page 527
Rock Fractures and Fluid Flow: Contemporary Understanding and Applications Sweet spots, 15, 173 Synclines, 88 T Technology. See also Geophysical technologies Tectonic events, and fracture formation, 35, 41, 73 Temperature hydraulic fracturing and, 417, 424 hydraulic tests and, 245 log, 170, 205 and mineralization, 440-441 and stress, 125, 424 Terranes, 67 Tests. See also Field tests; Hydraulic tests; Tracer tests stress sensitivity, 416-418 Theim formula, 260 Thermal gradients, 125 shrinkage, 17 stresses, 33, 45-46, 64-66 Thermodynamic equilibrium, 129 Thermoelasticity, and hydrofracture, 424-426 Thrust sheet, 74 Till, 27 Tiltmeters, 185, 219, 418 Tomography. See also Transmission tomography applications, 193, 219-220 electric resistivity, 169 electromagnetic, 169, 286 inversion methods, 189, 191-192, 195-196, 198-199 P-wave, 168 resolution, 192, 220-221 sources, 193, 195, 505 three-dimensional, 189, 505 two-dimensional, 198, 505 Topographic lows, 17 Topography of rough surfaces, 105, 107, 140 Tortuosity, 119-120, 121-122, 123, 124, 126-127, 144, 145-146, 156 Toughness, fracture, 42 Toxic and hazardous wastes, 1, 17-18, 311, 375, 383, 513 Tracer tests applications, 2, 12, 220, 221-222, 465 adsorption, 274-275 analysis of, 282-285, 293, 469 borehole dilution, 280, 282 in chalk formation (fractured), 292-293 channelized transport, 273-274, 284-285 convergent flow, 279-280, 292-293 diffusion into stagnant water and rock matrix, 274, 284-285 divergent flow, 278-279 in granite, 294-295 groundwater flow paths, 192, 276, 465-467, 492 interpretation of, 509 large-scale flow, 294-295 methodology, 276-282 models/modeling, 244, 282, 284, 293, 312 natural gradient, 276-277 with packers, 277 principles, 243-244 saline, 192, 193-194, 220, 221-222 research needs, 285-286, 509, 517 reservoir characterization, 478, 492 shear fractures, 127 solute transport processes, 126, 127, 272-275, 282 and tomography, 192, 193-194, 507 two-well, 280, 281 Transmission tomography borehole measurements, 188-196, 221-222 electric resistivity, 195-196

OCR for page 527
Rock Fractures and Fluid Flow: Contemporary Understanding and Applications electromagnetic, 194-195, 462 limitations, 505-506 principles, 188-192, 220-221, 505 radar, 193-194, 221-222, 507 and reflection data, 198-199 research recommendations, 505 resolution, 462-463 seismic velocity, 193, 194 Transmissivity, fracture, 16, 244-245, 247, 345-346, 388, 470 Transport structures, underground, 24-25 Travis Peak, Texas, 457 Tribology, 105 Tube waves, 138, 188, 214-216 Tunnels, 23, 24, 125, 185, 186, 196, 378, 434, 437, 438 Type curves, 261, 411 U Uncertainty in engineering, 443-445 Underground Research Laboratory, Manitoba, 20-21, 184, 187, 209, 313, 315, 390-392, 417-418, 456, 479-487, 513, 517 Underground structures. See also Caverns; Tunnels dewatering, 22, 23-24 fluid storage, 24-25 fractures and, 23-25 openings, 125, 420 stability, 22 transport, 24-25 University of Waterloo, 456 Unsaturated fractured rock, flow and transport in, 376-380 Uplifts, 77 U.S. Army Corps of Engineers, 5 U.S. Department of Energy, 5, 376, 407-409, 475-479 U.S. Department of the Interior, 5 U.S. Environmental Protection Agency, 5, 27 U.S. Geological Survey, 5, 27, 459-469, 517 V Vadose zone, 377-379, 381 Veins, 31, 40-41, 54, 74, 75 Velocity, seismic wave propagation, 133 Veneziano polygonal model, 337, 339-340, 341 Vertical fractures, 173, 177, 180, 185, 215, 253-254, 265, 270, 446 , 505 Vesicules, 67 Viscosity, 131-132, 134 Void geometry apertures, 106-109, 111, 118, 126-127, 128 castings of, 107, 108, 109-111, 129-130 chemical processes and, 439-443 characterization techniques, 107-108, 503 closure, 112, 113, 120 deformation, 124 and detection of fractures, 2 effective stress and, 406-426 elliptical, 121, 122-123 fluid flow, 2, 12, 112, 120, 121, 122-123, 124, 138, 147, 500 fracture surface roughness and, 107, 112 issues, 500, 503 mineral infilling and, 118, 126, 500 origin of fracture and, 118 parallel-plate, 121 and permeability, 119, 500 and solute transport, 126-127 statistical modeling, 111 stress effects on, 111-118, 124, 140, 146-147, 503 Volcanic rocks, 33-34, 45-46, 60, 379 W Wake/Chatham, North Carolina, 457 Waste disposal sites, 74, 193, 376, 442-443 Waste isolation and treatment, 10

OCR for page 527
Rock Fractures and Fluid Flow: Contemporary Understanding and Applications Waste Isolation Pilot Project, New Mexico, 20, 327-328, 457 Water. See also Fluid flow in fractures; Groundwater coning, 429-430 infiltration, 58 Water supply reservoirs, 18 Well logs/logging, conventional acoustic, 227 advantages and disadvantages, 202-203, 501 applications in fracture studies, 2, 3, 12, 13, 202, 203-204, 226-229 in boreholes, 202-206, 219 caliber log, 170, 227-228, 230, 231, 232 core analysis combined with, 202 density log, 170 fluid conductivity log, 170, 205 fluid replacement log, 170 gamma ray log, 170, 227, 228 models based on, 203, 204, 324-325, 371 neutron log, 170, 226, 227, 228 resolution, 204 resistivity measurements, 144, 170, 204-205, 226, 228 temperature log, 170, 205 Well test analysis, diagnostic, 296-302 Wellbore storage effects, 245, 261-263 Wells drilling technology, 416, 476, 477 flow models, 310, 412, 413 in geothermal fields, 26 hydraulic stimulation of, 231-232 injection, 122, 412, 413, 414 oil, 426 orientation, 416 phase changes in, 426 recharge, 278 waste disposal, 18, 414 Whiteshell Research Area, 390 Wolff net, 343-344 Y Yibal oil field, Oman, 175 Yucca Mountain, Nevada, 5, 6, 9, 19-20, 60, 80, 325-326, 376, 379