National Academies Press: OpenBook

Cutting Edge Technologies (1984)

Chapter: Introduction

« Previous: IV. Transportation Technology
Suggested Citation:"Introduction." National Academy of Engineering. 1984. Cutting Edge Technologies. Washington, DC: The National Academies Press. doi: 10.17226/286.
×
Page 135
Suggested Citation:"Introduction." National Academy of Engineering. 1984. Cutting Edge Technologies. Washington, DC: The National Academies Press. doi: 10.17226/286.
×
Page 136
Suggested Citation:"Introduction." National Academy of Engineering. 1984. Cutting Edge Technologies. Washington, DC: The National Academies Press. doi: 10.17226/286.
×
Page 137

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Intro~action MILTON PIKARSKY The political, economic, and social consequences of the Organization of Petroleum Exporting Countries' (OPEC's) actions during the late 1973-1974 period, exacerbated by the Iranian embargo in 1979, are still reverberating, and the world's transportation systems including that of the United States are in a major transitional period. The U.S. transportation system can be briefly described as a vast enterprise, the costs of which account for about $500 billion, or in excess of 20 percent of the gross national product, smaller than the amount for housing and larger than the amount for food. It is a fragmented system built and operated by thousands of private firms and government agencies in a decentralized fashion. Relatively few decisions are made, and few individuals or entities have effective control or even influence over much of the system. Rather, the relative size and efficiencies of different subsystems are the product of thousands of lower-level actions that respond to market decisions of shippers and travelers. All of this, when aggregated, results in the total transportation system. The current technological systems supporting this vast transportation network reflect nearly 100 years of progress, much of which has occurred in the last 50 years. Today, increasingly, technological innovation must be responsive to social, economic, and political pressures if it is to be effective. The three papers that follow explore current technological develop- ments and trends in these areas of transportation: (l) aviation and aircraft technology, (2) use of reinforced earth in surface transportation projects, and (3) railroad technology. 135

136 TRANSPORTATION TECHNOLOGY The U.S. civil aviation industry has been the dominant technological and market force. However, competitive forces worldwide, the domestic economy, and market uncertainties may alter the shape of the industry in the coming years. Technologically the civil aircraft vehicle is highly efficient because of its advanced electronic systems, and increased tech- nological efficiency is possible. However, affordability and planning imply restraint. It is against this background that the industry must shape itself in the future, and in the first paper, John E. Steiner describes the current technology as well as the technological building blocks and the potential rewards and challenges ahead. In the next paper, James K. Mitchell discusses the cutting edge of technology with regard to soil, one of our most abundant and least expensive potential construction materials. Human attempts to improve the soil for use as a structural material precede recorded history. Indeed, they can be dated to engineering and construction projects of 5,000 years ago, when the pyramids of the shenzi on the Tibetan-Mongolian plateau were built of a compacted mixture of clay and lime. We are all familiar with the Roman-built roads, which outlasted the empire and are still in evidence today. Soils have been wetted, dried, heated, frozen, pounded upon, vibrated, mixed with other materials, pushed, rolled, implanted with things, and dehydrated to improve their properties. Principles of soil behavior and foundation engineering that are still valid today were recorded in the Tribiuses, 10 books of archi- tecture of the first century B.C. In the New World the Mayans constructed roads that had a base of broken limestone with stone sizes decreasing upward, covered with a mortar of lime and sifted earth. The scarcity of timber in the southwestern United States and regions of Central and South America led to exploitation of local stones and soils, resulting in the familiar adobe brick, strengthened as necessary with sticks and reeds. The quest to better adapt soils for use in construction is not surprising, since in addition to being one of our most abundant and least expensive materials, soil is also one of our potentially most useful structural ma- terials. Despite the known potential to facilitate earth work and soil improve- ment work on a large scale, little exploitation of this potential construc- tion material occurred until the twentieth century. Indeed only in the last two decades have the methodologies for soil improvement and ground strengthening been developed. Of the existing methodologies, soil re- inforcement is the one most intensely studied and advanced in appli- cation. Many of the currently available techniques were specifically de- veloped for use in highway construction. Dr. Mitchell's presentation considers the currently available types of soil reinforcement, their ap- plication, design, construction, and economies.

INTRODUCTION 137 In the third paper, William J. Harris, Jr., discusses technological opportunities in the railroad industry. Successes stemming from earlier technological developments led the industry to a preeminent competitive position. It is natural that under those circumstances the railroads have failed to pursue new technology. However, with the gradual develop- ment of the truck and waterway modes of transportation and the com- pletion of the interstate system of highways, the railroads were suddenly confronted by a vigorous economic challenge. The railroad industry has responded with the adoption of new tech- nologies to force safety improvements and efficiencies in rail transpor- tation. Dr. Harris describes the current status of technology and the anticipated trends in the industry, bringing to the discussion his unique awareness of the technological and research issues facing the railroads during the present, uncertain, transition period on which deregulation legislation has had an impact.

Next: Air Technology: The Transport Vehicle and Its Development Environment »
Cutting Edge Technologies Get This Book
×
 Cutting Edge Technologies
Buy Paperback | $50.00
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Experts in computers, biotechnology, structural materials, and transportation provide a concise introduction to the promising technologies in these four exciting fields that affect all of society. Each section begins with a brief overview of the field, followed by more detailed papers describing specific technological advances, their current and projected applications, and the obstacles that must be overcome to ensure future progress.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!