Cover Image


View/Hide Left Panel

TABLE 2.1 Time Units for the Late Ordovician (Ashgill) and Earliest Silurian







































































Deglaciation started in the graptolite Glyptograptus persculptus zone. At least part of that zone is coeval with the latter part of the Hirnantian. The Ordovician-Silurian boundary is at the base of the Parakidograptus acuminatus zone. The glaciation was thus entirely within the latter part of the Ashgill.


The paleogeographic maps in Figures 2.1 and 2.2 were supplied by C. R. Scotese. The Ashgill and Early Silurian (Llandovery) paleogeography (i.e., the positions of the lands, shelf seas and open oceans of the time) has been developed from remnant magnetism data, glacially derived sedimentary materials and features, and the locales of carbonates and evaporites. The carbonates most likely formed in tropical shallow marine environments. Ocean water masses and ocean currents are proposed based on paleogeography and consideration of modern oceanic circulation patterns. Three primary features stand out (see Figure 2.1 and 2.2): (1) no record of land or shallow marine shelf environments in the Northern Hemisphere north of the tropics; (2) a significant number of plates bearing shallow marine environments aligned essentially east-west within the tropics; and (3) a large land mass, Gondwanaland, that covered the South Pole, with a portion of it extending northward into the equatorial region.

The positions of the plates bearing lands and shallow shelf seas, as well as the zoogeographic relationships of the faunas present in the rocks formed in these environments, allow the major features of ocean circulation to be proposed. Late Ordovician-Early Silurian ocean circulation (see Figures 2.1 and 2.2) is based on the assumption that similar insolation patterns existed in the Ashgill as at present. The presence of a large part of Gondwanaland in southern temperate and tropical latitudes suggests that ocean surface circulation near it was influenced by seasonal monsoons. The positions of pressure systems over land and nearby seas would have shifted seasonally, leading to seasonal reversals in surface ocean circulation, as is seen today in the Indian Ocean. Accordingly, surface ocean circulation patterns are proposed for winter and summer seasons (Figures 2.1 and 2.2).

Ocean surface circulation north of the Northern Hemisphere tropics would have been zonal. Surface circulation in the tropics would have been influenced greatly by the several plates bearing shallow marine environments. The relatively long north-south orientation of the Laurentian (North America), Baltoscania, and Gondwanaland plates would have resulted in major oceanic circulation that was essentially within a single ocean. The ocean bordered by Gondwanaland and Baltoscania (see Figures 2.1 and 2.2) would have had a unique surface circulation that included a relatively cold polar western boundary current that flowed northward on the west side of Gondwanaland. Upwelling would have been strong and continuous there as a result of Coriolis deflection. The modern analogue of that current is the Humboldt Current off Peru-Chile. A similar but weaker western boundary current probably flowed along the west side of Baltoscania.

Pre-Hirnantian Ashgill and Hirnantian brachiopod zoogeography provides clues to potential changes in surface circulation in the ocean between Baltoscania and Gondwanaland. Sheehan and Coorough (1990) recognized four unique zoogeographic faunas, prior to the Hirnantian, along the Baltoscanian-Gondwanaland coasts. A single fauna,

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement