INDEX

A

Acanthomorphs, 73

Acritarchs

   across Varanger ice age, 73, 74, 75-76

   cladogenetic evolution, 75, 78-79

   cohort survivorship in Proterozoic, 76

   diversity peaks, 77-78, 79

   fossil record, 69-73

   morphological diversification, 73

   Precambrian evolution, 67-69

   Proterozoic-Cambrian evolution, 74-80

Adaptive landscape

   analysis of walks in, 158-164

   depth of valley in, 28

   E. coli, 262-264, 267-268

   as metaphor, 145-147, 261-262

   morphospace in, 149

   phenotype fitness, modeling of, 153-154

   in phenotypic transformation, 146-147

   plant model, 147-154

   point of origin for walks in, 154

   quantitative analysis in, 145-146

   single vs. multi-task walks, 155-158

   task demands in, 146-147

   unimpeded walks in, 147-149

Adenosine triphosphatase, archaebacterial subunits, 13, 19

African replacement model, 203, 205

Amino acids

   covarion model of replacement, 235-236

   in major histocompatibility complex, 189

   replacement in RuBisCo protein, 223-227

   replacement in SOD, 235

   replacement patterns, 213, 230

   in replication in RNA world, 1, 35, 36, 37

   in SOD molecular clock, 244, 246-247

   See also Superoxide dismutase

Amphibians, in Cretaceous-Tertiary mass extinction, 118-119

Amylase, in Drosophila pseudoobscura, 289, 290-291

Annelids

   late Precambrian form, 103



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 315
--> INDEX A Acanthomorphs, 73 Acritarchs    across Varanger ice age, 73, 74, 75-76    cladogenetic evolution, 75, 78-79    cohort survivorship in Proterozoic, 76    diversity peaks, 77-78, 79    fossil record, 69-73    morphological diversification, 73    Precambrian evolution, 67-69    Proterozoic-Cambrian evolution, 74-80 Adaptive landscape    analysis of walks in, 158-164    depth of valley in, 28    E. coli, 262-264, 267-268    as metaphor, 145-147, 261-262    morphospace in, 149    phenotype fitness, modeling of, 153-154    in phenotypic transformation, 146-147    plant model, 147-154    point of origin for walks in, 154    quantitative analysis in, 145-146    single vs. multi-task walks, 155-158    task demands in, 146-147    unimpeded walks in, 147-149 Adenosine triphosphatase, archaebacterial subunits, 13, 19 African replacement model, 203, 205 Amino acids    covarion model of replacement, 235-236    in major histocompatibility complex, 189    replacement in RuBisCo protein, 223-227    replacement in SOD, 235    replacement patterns, 213, 230    in replication in RNA world, 1, 35, 36, 37    in SOD molecular clock, 244, 246-247    See also Superoxide dismutase Amphibians, in Cretaceous-Tertiary mass extinction, 118-119 Amylase, in Drosophila pseudoobscura, 289, 290-291 Annelids    late Precambrian form, 103

OCR for page 315
-->    phylogenic lineage, 97-98 Anticodon, origins, 26, 37 Archaea, 15-16 Archaebacteria    characteristics, 11-12    classification, 11, 21-22    in eubacteria-eukaryotic-prokaryotic lineage, 4, 12-16    genome sequence, 18, 21    ribozymology, 4-5    RNA polymerase subunits, 20 Arthropods    late Precambrian form, 102-103    phylogenetic lineage, 95, 96-97 Asexual reproduction, 53 Atmospheric conditions    in Cambrian explosion, 102    primordial cyanobacteria, 55-56 B Background selection, 276, 277-282 Bacteria    chloroplast-mitochondria lineage in, 9    as prokaryotes, 6    reproductive rate, 251    See also E. coli Bacteriophages    P1. See Framework P1 map    Qß, replication strategy, 28-29, 30, 33-34 Balanced selection, 196-197, 199 Bilaterians    body plan evolution, 101    Vendian, 95, 97, 98-99 Biometrical science, iv Bipedalism, 173-175 Bottleneck effect, 188-189, 197-201, 206    in human evolution, 203, 204 Brachiopods, 98 Bradytelic evolution, 43    Simpson on, 53, 131-132 Brome mosaic virus, 29 Burgess Shale    cnidarians in, 90    middle Cambrian diversity in, 91 C Cambrian Period, 85    acritarch evolution, 69-80    annelids, 97-98    boundaries of explosion, 88-89, 91    environmental factors in explosion, 102    gene expression in explosion, 103    metazoan body plans, 87, 93    metazoan diversity before explosion, 85, 99    metazoan faunas, 89-91    skeletal fossils, 90-91 Candelabra model, 202-203 Cauliflower mosaic virus, 33 CCA terminus, 3, 28, 31, 35-37 Cell-type number, 92-93 Cenancestor    definition, 6    in eukaryote-prokaryote lineage, 10-11    genome structure, 18    Iwabe rooting, 13-15, 16-20    macromolecular synthesis in, 25-26    obstacles to understanding, 20-22 Cephalopods, body plan, 98 Chance events, 251, 267-268 Chloroplast    amino acid replacement in, 223-227    codon use, 220, 229    complexity of genome evolution in, 229-231    eukaryote-prokaryote lineage, 7, 9, 21    in eukaryotic cell, 215    genome conservation, 216-217    genome structure, 213, 215, 216    genomic deletion events, 217-219    intron evolution, patterns of, 228-229    mutation patterns, 217-220    noncoding DNA in, 217-220, 229    nucleotide substitution rate, 221-223    protein coding genes in, 220-223    pseudogenes, 217    research role, 230

OCR for page 315
--> Chromosomes    Drosophila polymorphism, 251-252, 283    Drosophila polytene, 299-300, 307, 310    mapping, 252    telomerase, 34 Chroococcaceans    fossil-modern comparisons, 49-50, 52    ranges of growth/survivability, 53-55 Classification systems    cenancestor in, obstacles to, 20-22    cyanobacteria, 44, 49    domains in, 14-15, 16    prokaryote-eukaryote-archaebacteria, 6-7, 11, 14-16 Cnidarians, 89-90 Coalescence theory, 196-197, 206 Codons    in chloroplast, 220, 229    concomitantly variable. See Covarions    in molecular clock, 243-244 Color vision, 205-206 Comparative sequence analysis, 230, 231 Competition, as extinction factor, 111-112, 117-118 Complexity    body plan, cell-type number and, 92-93    Cambrian metazoa, 92    forcing mechanisms in, 92, 93    morphological diversity and, 86    Precambrian worms, 99 Covarions    in molecular clockwork, 243, 246, 248    in SOD simulation, 236-237, 240, 243    theory of, 235-236 Cretaceous-Tertiary mass extinction, 110, 114-115, 118-119, 121 Cyanobacteria, 9    classification, 6    ecological distribution, 53    hypobradytelic evolution in, 47-53, 57    living vs. fossil morphology, 44, 47-50, 48, 57    paleoenvironment, 50-52    Precambrian evolution, 42, 57-58    Precambrian fossil record, 43, 44-46    ranges of growth/survivability, 53-56    reproduction, 53    specialization and survivability, 53, 56    tempo of evolution, 43-44 Cytoskeletal proteins, 16 D Darwin, Charles, iii-iv, 125    on extinction, 109-111, 117-118, 137    Lyell and, 126    uniformitarianism in thought of, 126-127, 137 Deuterostomes, 95, 96 Dinosaurs    fossil record, 113    species susceptibility in extinction, 120    taxonomic selectivity in extinction of, 118 Diplomonads, 19 Discontinuous variation, iv Diversity peaks    acritarch, 74-76, 77-79    Cambrian explosion, 85, 87-91, 93, 99, 102-103    Middle Cambrian body plans, 91    Proterozoic protistans, 77-78, 79, 80 DNA    Drosophila, extraction and sequencing of, 289-290    Drosophila polymorphism, patterns of, 251, 283    in Drosophila polytene, 300

OCR for page 315
-->    evolutionary complexity in chloroplast genome, 229    evolutionary data in, 188    human mitochondrial evolution, 203-204, 206    mitochondrial polymorphism, 189    non-primer synthesis, 33    noncoding, in chloroplast genome, 217-220, 229    RNA ancestry in, 4-6    selective sweeps effects, 277    sequence data base, 275    tRNA in replication of, 31-33 Dobzhansky, Theodosius, 252, 287-288 Domains, classification of, 14-15, 16 Drosophila    amylase in, 290-291    ancestor chromosomes, 252    ancestor gene in pseudoobscura, 288-297, 310-311    chromosome mapping, 252    chromosome polymorphism, patterns in, 251    cytogenetic phylogeny, 288    early chromosomal studies, 287-288    extraction and sequencing of genomic DNA, 289-290    mutation rate, 280-282    polytene chromosome, 299-300, 307, 310    recombination-polymorphism correlation, 276, 282-283    reproductive rate, 251    research advantages, 299-300    restriction site polymorphism, 289, 292-294    virilis, 311    yeast artificial chromosome map, 300    See also Framework P1 map Duration of species, 195-196 E E. coli, 11, 18    adaptive landscape, 262-264, 267-268    assessment of mean fitness in, 255, 259-260    cell size evolution, 256-259    chance events in experimental evolution, 267    environmental factors in, 268    evolutionary stasis in experimental populations, 268-269    experimental evolutionary method, 255-256    fitness evolution in experimental population, 260-261    in Framework P1 map, 301-302    limitations of experimental evolution, 270    measurement of cell size, 255, 256, 264    natural selection in experimental population, 256, 257, 259, 264-266    outcomes of experimental evolution, 271    parallel evolution in experimental populations, 266-268    punctuated equilibrium in experimental evolution, 269    reproductive rate, 251    size-fitness relationship, 264-266 Elongation factors    precenancestral, 13, 19-20    in Qß RNA genome replication, 30    Tu, RNase P and, 29 Endosymbiont hypothesis, 7, 9, 21 Entophysalidaceae, 50, 52 Environmental factors    in acritarch evolutionary tempo, 79    in Cambrian explosion, 79, 102    cyanobacterial growth tolerances, 53-56    in E. coli experimental evolution, 268    in extinction, 119, 121, 122    in morphological research, 254-255    in prokaryotic evolution, 42 Eosynechococcus moorei, 47 Epling, Carl, 252, 287-288 Eubacteria, 4, 11    archaebacteria linkage, 14, 20

OCR for page 315
-->    genome sequencing, 21    operans in, 18    origins of, 13-14 Eukaryotes    ancestral ribosome, 9    chloroplast genome, 215    endosymbiont hypothesis, 7, 9, 21    as Eucarya, 15    evolution of, 4-6    evolutionary model, 7-12    evolutionary pathway, 12-16    fossil record, 7    introns, 78    nuclear genome evolution, 18-19    nuclear lineage, 9, 11    Precambrian acritarchs, 67-73    prokaryotes vs., 6-7    Proterozoic algae, 78    rate of evolution, 2    RNA polymerase subunits, 20    rRNA sequencing, 8-9, 11    tRNA production, 30 Evolutionary theory    bipartite model, 56-57    cellular information systems in, 4-6    eukaryotes-prokaryote lineage, 7-12    eukaryotes-prokaryote split, 12-16    genomic diversity of viruses, 30-31    historical development, iii-vi    human origins, 201-205    intron theory, 11, 78    Modern Synthetic, 129    molecular research in, 22    paleontology and, 127-131    precellular evidence, 27    RNA in, 25-26    significance of extinction, 85-86, 109, 122-123    See also Darwin, Charles    See also Macroevolutionary theory Exon theory, 11 Extinction    aftermath, 117, 122    body size and, 119    Cretaceous-Tertiary event, 110, 114-115, 118-119, 121    Darwin on, 109-111, 117-118, 137    environmental factors in, 121, 122    episode analysis, 114-117    evolutionary significance, 85-86, 109, 122-123    fossil record, 110, 112-113    geographic distribution and, 119    interspecies competition in, 111-112, 117-118    kill curve, 115-117    mass episodes, 110, 112, 114-115, 117, 123, 137    natural selection and, 120    role of, 121-122    selectivity mechanisms in, 117-120, 123    Simpson on, 111-112    species susceptibility, 119-120    taxonomic susceptibility, 118-119    trait susceptibility, 119 F Fitness as evolutionary factor    E. coli cell size and, 264-266    E. coli evolutionary trajectory, 260-264    measuring, in E. coli, 255-256, 259-260    modeling evolutionary morphology of vascular land plants, 149-154, 158-164    modeling of task demands for plants, 155-158    modeling requirements, 147-149    in morphological transformation, 146-147    obstacles to analysis, 145-146    phenotypic maxima vs. phenotypic optima, 157-158    plants as object of study, 147    task demands and, 146 Fossil record    acritarchs, Proterozoic-Cambrian, 69-73    annelid, 97-98    brachiopod, 98

OCR for page 315
-->    correspondence of computer simulations, 160-162    cyanobacterial hypobradytely, 47-53    discontinuities in, v    earliest metazoan, 89-90    earliest skeletal, 90-91    Early Cambrian, 87    eukaryote, 7    extinctions in, 110, 112-113    H. erectus, 202    hominid, 169, 173-175, 202, 203    hypobradytelic evolution, 44-46    marine animal survivorship analysis, 113    molecular fossils, 27, 43, 44-46    in morphological research, 254-255    Paleoproterozoic, 2    pre-cellular, 1    Precambrian, 1-2, 43, 44-46    prokaryote, 7    Proterozoic-Cambrian, 64-73    Simpson's use of, 41    tracheophytes, 154, 160-162 Founder effect theory, 188-189, 197-201, 206 Framework P1 map    cloning vectors, 301-302    contig assembly, 306-307    cytological analysis, 302, 307    D. virilis in, 311    depth of coverage, 300    distribution of clones, 304-305    Drosophila library, 303-304    Drosophila strains, 300-301    dual hybridizations, 304    electronic mail access, 300    in evolution studies, 307-311, 312    insert sizes, 300    ligated DNA packaging, 301-302    PCR amplification of insert-vector junctions, 302-303    PCR screening, 303    plasmid DNA extraction, 302    results, 303-307, 311-312    STS markers, 299, 303, 306-307    X chromosome, 305 G Genetic information transfer    allele selectivity, 195    archaebacterial, 14    in Cambrian explosion, 103    cellular evolution, 4, 9-10    chloroplast rp123 pseudogene, 217-219    chloroplast to eukaryotic nuclear genome, 215-216    coalescence theory, 196-197    human polymorphisms, population size in, 197-201    lateral events, 21    metazoan body plan evolution, 99-101    molecular clocks, 240-243    in multiregional model of human evolution, 205-206    in natural selection, 140-141    recombination-polymorphism correlation, 276-283    trans-specific polymorphisms, 191-196 Genetic science    comparative sequence analysis in, 230, 231    in evolutionary theory, iii-iv    in phylogenetic reconstruction, 252    population processes in, 275-276    role of phylogeny research in, 216    in species research, 187-188 Genotype    mapping, 145-146    phenotype linkage, 4, 6, 10 Geographic distribution    cyanobacteria, 53, 56    extinction and, 119    in human origins, 202-207 Gloethece coerulea, 47 Haloferax volcanii, 18 H Halophiles, 11    genome structure, 18 Hedgehog gene, 100-101

OCR for page 315
--> Hitchhiking effects, 276, 277, 282-283 Homeobox genes, 100, 101 Horotelic evolution, 43, 131, 132 Hox/HOM genes, 100, 101 Human evolution    allele phylogeny in, 191-193    ancestral population size, 197-201    ancestral species overlap, 181    bipedalism, 173-175, 182    body size, 175-177    brain size, 178-181, 182    color vision in, 205-206    cranial, 170-173, 182    dentition, 170, 177-178, 182    DRB1 gene, 193    food consumption, 177-178    gene coalescence in, 196-197, 203-204, 206    geographic models, 202-206    hand structure, 175    histocompatibility complex allele complexity, 167    lipid metabolism in, 206    morphological course, 167, 182    most primitive hominid, 170, 173, 177    multiregional model, 204-206    phylogeny, 169-173    population bottlenecks in, 188-189, 197-201, 206    research trends, 167-168, 169    single ancestor theory, 189, 203    theory of origins, 201-205    trans-specific polymorphism in speciation, 193-196    within-species variation, 182 Human Genome Project, 299 Human leukocyte antigen complex. See Major histocompatibility complex Hypobradytelic evolution    in cyanobacteria, 43-44, 46-56    fossil evidence, 44-46 I Immune system, major histocompatibility complex in, 189 in situ hybridization, in chromosome mapping, 300 Introns, 11, 78    evolutionary patterns in chloroplast genome, 228-229 L Light conditions, for early cyanobacteria, 55 Lipid metabolism, 206 Lobopods, 97 Lyell, Charles, 126 Lyngbya, 47, 48 M Macroevolutionary theory, 85-86    causality in, 136    experimental E. coli evolution and, 270-271    hierarchical selection theory in, 137-142    mass extinction in, 137    punctuated equilibrium in, 136-137    Simpson and, 132-136 Macromolecules    evolutionary pathways of synthesis, 25    social coevolution, 27-28 Major histocompatibility complex    action of, 189    allelic diversity, 189-191    allelic phylogeny, 196-197    DRB1 gene, 191-193, 196-197, 206    maintenance of polymorphisms, population size in, 197, 201, 206-207    role of, 189, 206    trans-specific polymorphisms, 191-193 Mapping, genomic, 145-146    Drosophila, 252, 299, 300    framework map, definition of, 300    human, 299    hybridization technique in, 300    overlap detection in, 299, 300

OCR for page 315
-->    role of, 299    yeast artificial chromosome map, 300    See also Framework P1 map Mauriceville plasmid, 31-34 Messenger RNA, 1, 26 Metazoans    body-plan complexity, 91-93    Cambrian faunas, 90-91    Cambrian/Precambrian body plans, 87    earliest fossils, 89-90    genetic regulation in body plan evolution, 99-102    Hox/HOM genes in, 100    late Precambrian body plans, 95-99    Precambrian diversity, 99    Precambrian phylogeny, 95, 102-103 Methanogens, 11 Microsporidia, 19 Mitochondria    eukaryote-prokaryote lineage, 7, 9, 21    human evolution, 203-204, 206    Mauriceville plasmid of Neurospora, 31-33 Mode of evolution    corresponding tempos, 132    definition, 3    in molecular research, 3    paleontological research, 130-131    quantum, 134 Molecular fossils, 27, 43, 44-46 Mollusks, 98    extinction record, 119 N Natural selection. See Selection Neurospora, Mauriceville plasmid, 31-33 Noah's Ark model, 203 Nucleotide substitution    in chloroplast genome, 221-223    as molecular clock, 242-243    recombination rate and, 278-279 O Operons, in archaebacterial/eubacterial lineage, 18-19 Oscillatoriaceans    fossil-modern comparisons, 49-50, 52    ranges of growth/survivability, 53-55 Paleolyngbya, 47, 48 P Paleontology    in evolutionary science, 129-131, 142-143    phyletic data in, 133    professional status, 127-129 Paleoproterozoic, 2 Paleozoic era, time scale, 64 Paralogy, 20-21 Phanerozoic eon    evolution in, 41, 56-57, 58    rate of evolution, 52-53    worms, 99 Phenotype    cell-type number in body plan complexity, 92-93    genotype mapping, 145-146    identifying trends in, 254    modeling fitness transformations, 147-149, 160 Photosynthesis, 216    endosymbiont hypothesis, 7 Phycodes pedum, 88 Phycomata, 67-68 Phylogeny    algal eukaryotes, 78    alleles in reconstruction of, 191    amino acid replacement, 224, 226, 230    archaebacteria-eukaryote-prokaryote, 6-20    chloroplast genome, 229-230    Drosophila pseudoobscura ancestor gene, 288-297    eukaryote, 26

OCR for page 315
-->    experimental reconstruction in bacteria, 255-256    genetics in reconstruction of, 252    hominid cladogram, 169-173    metazoan body plans, 93-99    Precambrian branching sequences, 93-95    precenancestral, reconstruction of, 20-22    prokaryote, 6-20    reconstruction process, 292    research role, 216    Simpson's emphasis on, 133-134    SOD amino acids, 237    tRNA evolution, 26, 34-38 Plants    chloroplast genome, 213, 215, 216    intron evolution, 228-229    modeling evolutionary morphology of, 149-154, 158-164    modeling of task demands, 155-158    tracheophyte evolution, 149, 154, 160-162 Pleistocene epoch    extinction in, 121    human population growth in, 198 Pleurocapsaceans, 51-52 Polymerase chain reaction, 302-303 Polymerases, domain structure, 33-34 Population size    cyanobacteria, 53    in fixation of neutral allele, 195    in founder effect theory of speciation, 188    in human evolution, 197-201, 203-207    in maintenance of polymorphism, 197 Postmodern thought, 135-136, 143 Precambrian era    arthropod evolution, 95, 96-97    clade diversity, 69    cyanobacterial hypobradytely in, 47-53, 57-58    evolution in, 57-58    life of, 41-42    metazoan body plans, 95-99    molecular fossil record, 43, 44-46    phylogenetic models, 93-95    prokaryote evolution, 41-42    vascularized worms, 95-96, 98-99, 102-103    Vendian fauna, 89-90, 95-96, 97 Progenote, 1    as cenancestor, 10, 22    definition, 6    ribosomal structure, 9-10    templated protein synthesis in, 26 Prokaryotes    distinguishing features, 6-7    eukaryotes vs., 6-7    evolutionary forces, 41-42    evolutionary model, 7-12    evolutionary pathway, 12-16    fossil record, 7    introns in, 11    Precambrian, 41-43    rate of evolution, 1-2    rRNA sequencing, 8-9, 11 Protein coding genes, 220-223 Proteobacteria, 9 Proterozoic eon    acritarch evolution in, 73-80    clade diversity in, 69    eukaryotes in, 72    paleontological data base, 69-72    time scale, 64-66 Protistan    Paleoproterozoic evolution, 2    Proterozoic diversity peaks, 77-78, 79, 80 Protostomes, phylogenetic lineage, 95, 96 Punctuated equilibrium, 136-137, 269 R rDNA, 9 Recombination rate, correlation with polymorphism, 276-283 Reef communities, 117 Replication    earliest RNA genomes, 28-29

OCR for page 315
-->    Mauriceville plasmid of Neurospora, 31-33    as selectivity criteria, 140-141    transitional genomes in, 31-33    tRNA origins in, 26, 37-38 Reproduction    asexual, 53    evolutionary dynamics, 253    rate of, 251    tracheophyte model, 152-153 Restriction site polymorphism, 289, 292-294 Retroviruses, replication strategy, 31, 33 Ribonucleotide reduction, in RNA-DNA ancestors, 4-5 Ribosomal RNA    arthropod, 96    eukaryote-prokaryote lineage, 8-10, 11    as molecular chronometer, 22 RNA    3' terminal sequence, 28-30    archaebacterial/eukaryotic linkage, 20    earliest genomic tags, 28-29    evolutionary role, 25-26    introns early hypothesis, 11    messenger, 1, 26    origins of, 26    See also Transfer RNA RNase P, 29, 37 RuBisCo protein, 223-224, 226 S Seaweeds, pre-Ediacaran, 68 Segment-polarity genes, 100-101 Selection, iv    in adaptive landscape, 145-147, 261-262    of alleles, 195    in amino acid replacement, 230    background selection model, 277-282    balanced, 196-197, 199    in chloroplast codon use, 220    codical domain in, 140-142    in E. coli cell size, 257, 259, 264-266    emergent fitness hypothesis in, 140    emergent trait hypothesis in, 139-140    in experimental E. coli populations, 256    extinction and, 86, 110-111, 117-120, 120, 123    hierarchical theory, 137-142    macroevolutionary theory, 86    in species extinction, 86, 119-120    in stasis of E. coli experimental populations, 268-269 Simpson, George Gaylord, iii-iv, v-vi, 3, 41, 287-288    on bradytelic evolution, 53    contributions of, 129-132    evolutionary rate classification, 43    on extinction, 111-112    on human evolution, 167    macroevolutionary theory and, 132-136, 142-143 Skeletal fossils, 90-91    hominid evolution, 173-181 SOD. See Superoxide dismutase Sonic hedgehog gene, 100-101 Specialization    in cyanobacterial evolution, 53-56    in Precambrian microbes, 41-42    rate of evolution and, 53 Speciation    definition, 187    founder effect theories, 188-189, 197-201, 206    gene polymorphism in, 193-196    as mode of evolution, 131    obstacles to research, 187-188    Simpson on, 133 Species    definition, 187    duration, 195-196    as paleontological unit of study, 69    in selective extinction, 119-120    trans-specific polymorphisms in, 191-193 Sulfolubus, 18 Superoxide dismutase    action of, 237    amino acid replacement in, 235    covarions in, 236-237, 240, 243, 248

OCR for page 315
-->    as molecular clock, 213-214, 243-248    phylogeny, 237    sequence analysis, 236-237    structure, 237 T Tachytelic evolution, 43, 131, 132 Taq DNA polymerase, 30 Telomerase, tRNA, 28, 30, 34-35, 37 Templated protein synthesis    origins of tRNA replication before, 26, 28    in progenote, 26 Tempo and Mode in Evolution, iii, v, 3, 41, 111-112    human evolution in, 167    significance of, 129-132    theory in, 132-134 Tempo of evolution    amino acid replacement in SOD, 235-236    bradytelic, 43, 131-132    chloroplast genome, 229-231    chloroplast introns, 228-229    constancy model, 213-214    corresponding modes, 132    cyanobacterial hypobradytely, 47-53    definition, 3    in detecting trans-specific polymorphisms, 192-193    determinants of, v    in experimental E. coli population, 266-269, 271    hitchhiking hypothesis, 277    horotelic, 43, 131, 132    hypobradytelic, 43-44    introns in acceleration of, 78    in molecular research, 3    nucleotide substitution in chloroplast genome, 221-223    Paleoproterozoic, 2    Phanerozoic, 52    Precambrian, 41, 53    Proterozoic-Cambrian acritarchs, 74-76, 78-80    Proterozoic-Cambrian database, 67-69    role of paleontology in, 130-131    Simpson's model, v-vi, 131-132    specialization and, 53    tachytelic, 43, 131, 132 Tetrahymena, 34 Thermophiles, 12    ranges of growth, 55    tryptophan operans in, 18 Trace fossils    early Cambrian, 91    Vendian, 90, 95-96 Transcription, tRNA, 29 Transfer RNA    5' processing, 29-30    earliest genomic tags, 28-29    evolutionary phylogeny, 26, 34-38    nucleotidyltransferase, 28, 29, 30    in replication, 31-33    as replication primer, 33-34    telomerase, 28, 30, 34-35, 37    top half, 29, 35-36, 38 Triassic coal gap, 117 tRNA. See Transfer RNA Tryptophan operans, 18 Turnip yellow mosaic virus, 29, 31, 33 U Ultraviolet light, 55 Uniformitarianism, 126-127, 137, 229 V Varanger ice age, acritarch evolution across, 72, 73, 74, 75-76 Vendian fauna, 89-90, 95-96, 101    segmented bilaterians, 97, 98-99 Viruses    genomic diversity, 30-31    replication strategies, 31-34 W Worms    late Precambrian, 95-96, 98-99    in metazoan evolutionary phylogeny, 102