contemporary genomes. This phylogeny is unique in suggesting that the function of tRNA in replication dates back to the very beginnings of life on earth, before the advent of templated protein synthesis. The origin we propose for tRNA has distinct implications for the order in which other components of the modern translational apparatus evolved. We further suggest that the "top half" of modern tRNA—a coaxial stack of the acceptor stem on the TΨC arm—is the ancient structural and functional domain and that the "bottom half" of tRNA—a coaxial stack of the dihydrouracil arm on the anticodon arm—arose later to provide additional specificity.

References

Akins, R. A., Kelley, R. L. & Lambowitz, A. M. 1989. Characterization of mutant mitochondrial plasmids of Neurospora spp. that have incorporated tRNAs by reverse transcription. Mol. Cell. Biol. 9, 678–691.

Alberts, B. M. 1986. The function of the hereditary materials: Biological catalyses reflect the cell's evolutionary history. Am. Zool. 26, 781–796.


Benner, S. A., Ellington, A. D. & Tauer, A. 1989. Modern metabolism as a palimpsest of the RNA world. Proc. Natl. Acad. Sci. USA 86, 7054–7058.

Blackburn, E. H. 1991. Structure and function of telomeres. Nature (London) 350, 569–573.

Blumenthal, T. & Carmichael, G. C. 1979. RNA replication: Function and structure of Qß replicase. Annu. Rev. Biochem. 48, 525–548.


Cavarelli, J., Rees, B., Ruff, M., Thierry, J. C. & Moras, D. 1993. Yeast tRNA(Asp) recognition by its cognate class II aminoacyl-tRNA synthetase. Nature (London) 362, 181–184.

Cech, T. R., Zaug, A. J. & Grabowski, P. J. 1981. In vitro splicing of the ribosomal RNA precursor of Tetrahymena: Involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 27, 487–496.

Chapman, K. B., Bystrom, A. S. & Boeke, J. D. 1992. Initiator methionine tRNA is essential for Ty1 transposition in yeast. Proc. Natl. Acad. Sci. USA 89, 3236–3240.

Connell, G. J., Illangesekare, M. & Yarus, M. (1993) Three small ribooligonucleotides with specific arginine sites. Biochemistry 32, 5497–5502.

Covey, S. N. & Turner, D. S. 1986. Hairpin DNAs of cauliflower mosaic virus generated by reverse transcription in vivo. EMBO J. 5, 2763–2768.

Crothers, D. M., Seno, T. & Söll, D. G. 1972. Is there a discriminator base in transfer RNA? Proc. Natl. Acad. Sci. USA 69, 3063–3067.

Cusack, S., Berthet-Colominas, C., Hartlein, M., Nassar, N. & Leberman, R. 1990. A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 A. Nature (London) 347, 249–255.


Eriani, G., Delarue, M., Poch, O., Gagloff, J. & Moras, D. 1990. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature (London) 347, 203–206.


Gilbert, W. 1986. The RNA world. Nature (London) 319, 618.

Green, C. J., Vold, B. S., Morch, M. D., Joshi, R. L. & Haenni, A. L. 1988. Ionic conditions for the cleavage of the tRNA-like structure of turnip yellow mosaic virus by the catalytic RNA of RNase P. J. Biol. Chem. 263, 11617–11620.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement