Government agencies, including the National Science Foundation and Public Health Service, enforce laws and regulations that deal with misconduct in science. At the Public Health Service in Washington, D.C., complaints can be referred to the appropriate office through the Office of Research Integrity. At the National Science Foundation in Arlington, Virginia, complaints can be directed to the Office of the Inspector General. Within universities, research grant officials can provide guidance on whether federal rules may be involved in filing a complaint.

Many institutions have prepared written materials that offer guidance in situations involving professional ethics. Volume II of Responsible Science: Ensuring the Integrity of the Research Process (National Academy Press, Washington, D.C., 1993) reprints a number of these documents. Sigma Xi, a national society of research scientists headquartered in Research Triangle Park, North Carolina, the American Association for the Advancement of Science in Washington, D.C., and other scientific and engineering professional organizations also are prepared to advise scientists who encounter cases of possible misconduct.

The research system exerts many pressures on beginning and experienced researchers alike. Principal investigators need to raise funds and attract students. Faculty members must balance the time spent on research with the time spent teaching undergraduates. Industrial sponsorship of research introduces the possibility of conflicts of interest.

All parts of the research system have a responsibility to recognize and respond to these pressures. Institutions must review their own policies, foster awareness of research ethics, and ensure that researchers are aware of the policies that are in place. And researchers should constantly be aware of the extent to which ethically based decisions will influence their success as scientists.

THE SCIENTIST IN SOCIETY

Any research organization requires generous measures of the following:

  • social space for personal initiative and creativity;

  • time for ideas to grow to maturity;

  • openness to debate and criticism;

  • hospitity toward novelty; and

  • respect for specialized expertise.

[These] may sound too soft and old-fashioned to stand up against the cruel modern realities of administrative accountability and economic stringency. On the contrary, I believe that they are fundamental requirements for the continued advancement of scientific knowledge—and, of course, for its eventual social benefits.

—JOHN ZIMAN, Prometheus Bound: Science in a Dynamic Steady State, Cambridge University Press, New York, 1994, p. 276.

This booklet has concentrated on the responsibilities of scientists for the advancement of science, but scientists have additional responsibilities to society. Even scientists conducting the most fundamental research need to be aware that their work can ultimately have a great impact on society. Construction of the atomic bomb and the development of recombinant DNA—events that grew out of basic research on the nucleus of the atom and investigations of certain bacterial enzymes, respectively—are two examples of how seemingly arcane areas of science can have tremendous societal consequences.

The occurrence and consequences of discoveries in basic research are virtually impossible to foresee. Nevertheless, the scientific community must recognize the potential for such discoveries and be prepared to address the questions that they raise. If scientists do find that their discoveries have implications for some important aspect of public affairs, they have a responsibility to call attention to the public issues involved. They might set up a suitable public forum involving experts with different perspectives on the issue at hand. They could then seek to develop a



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 20
On Being a Scientist: Responsible Conduct in Research Government agencies, including the National Science Foundation and Public Health Service, enforce laws and regulations that deal with misconduct in science. At the Public Health Service in Washington, D.C., complaints can be referred to the appropriate office through the Office of Research Integrity. At the National Science Foundation in Arlington, Virginia, complaints can be directed to the Office of the Inspector General. Within universities, research grant officials can provide guidance on whether federal rules may be involved in filing a complaint. Many institutions have prepared written materials that offer guidance in situations involving professional ethics. Volume II of Responsible Science: Ensuring the Integrity of the Research Process (National Academy Press, Washington, D.C., 1993) reprints a number of these documents. Sigma Xi, a national society of research scientists headquartered in Research Triangle Park, North Carolina, the American Association for the Advancement of Science in Washington, D.C., and other scientific and engineering professional organizations also are prepared to advise scientists who encounter cases of possible misconduct. The research system exerts many pressures on beginning and experienced researchers alike. Principal investigators need to raise funds and attract students. Faculty members must balance the time spent on research with the time spent teaching undergraduates. Industrial sponsorship of research introduces the possibility of conflicts of interest. All parts of the research system have a responsibility to recognize and respond to these pressures. Institutions must review their own policies, foster awareness of research ethics, and ensure that researchers are aware of the policies that are in place. And researchers should constantly be aware of the extent to which ethically based decisions will influence their success as scientists. THE SCIENTIST IN SOCIETY Any research organization requires generous measures of the following: social space for personal initiative and creativity; time for ideas to grow to maturity; openness to debate and criticism; hospitity toward novelty; and respect for specialized expertise. [These] may sound too soft and old-fashioned to stand up against the cruel modern realities of administrative accountability and economic stringency. On the contrary, I believe that they are fundamental requirements for the continued advancement of scientific knowledge—and, of course, for its eventual social benefits. —JOHN ZIMAN, Prometheus Bound: Science in a Dynamic Steady State, Cambridge University Press, New York, 1994, p. 276. This booklet has concentrated on the responsibilities of scientists for the advancement of science, but scientists have additional responsibilities to society. Even scientists conducting the most fundamental research need to be aware that their work can ultimately have a great impact on society. Construction of the atomic bomb and the development of recombinant DNA—events that grew out of basic research on the nucleus of the atom and investigations of certain bacterial enzymes, respectively—are two examples of how seemingly arcane areas of science can have tremendous societal consequences. The occurrence and consequences of discoveries in basic research are virtually impossible to foresee. Nevertheless, the scientific community must recognize the potential for such discoveries and be prepared to address the questions that they raise. If scientists do find that their discoveries have implications for some important aspect of public affairs, they have a responsibility to call attention to the public issues involved. They might set up a suitable public forum involving experts with different perspectives on the issue at hand. They could then seek to develop a

OCR for page 20
On Being a Scientist: Responsible Conduct in Research consensus of informed judgment that can be disseminated to the public. A good example is the response of biologists to the development of recombinant DNA technologies—first calling for a temporary moratorium on the research and then helping to set up a regulatory mechanism to ensure its safety. This document cannot describe the many responsibilities incumbent upon researchers because of science's function in modern society. The bibliography lists several volumes that examine the social roles of scientists in detail. The important point is that science and technology have become such integral parts of society that scientists can no longer isolate themselves from societal concerns. Nearly half of the bills that come before Congress have a significant scientific or technological component. Scientists are increasingly called upon to contribute to public policy and to the public understanding of science. They play an important role in educating nonscientists about the content and processes of science. In fulfilling these responsibilities scientists must take the time to relate scientific knowledge to society in such a way that members of the public can make an informed decision about the relevance of research. Sometimes researchers reserve this right t o themselves, considering nonexperts unqualified to make such judgments. But science offers only one window on human experience. While upholding the honor of their profession, scientists must seek to avoid putting scientific knowledge on a pedestal above knowledge obtained through other means. Many scientists enjoy working with the public. Others see this obligation as a distraction from the work they would like to be doing. But concern and involvement with the broader uses of scientific knowledge are essential if scientists are to retain the public's trust. The research enterprise has itself been changing as science has become increasingly integrated into everyday life. But the core values on which the enterprise is based—honesty, skepticism, fairness, collegiality, openness—remain unchanged. These values have helped produce a research enterprise of unparalleled productivity and creativity. So long as they remain strong, science—and the society it serves—will prosper. THE NATIONAL RESEARCH COUNCIL AND SERVICE TO SOCIETY One way in which scientists serve the needs of the broader society is by participating in the activities of the National Research Council, which is administered by the National Academy of Sciences, the National Academy of Engineering, and the Institute o f Medicine. The National Research Council brings together leaders from academe, industry, government, and other sectors to address critical national issues and provide advice to the U.S. government and its citizens. Over the course of a typical year, about 650 committees involving approximately 6,400 individuals study societally important issues that involve science and technology. All of these experts volunteer their time to serve on study committees, plan and participate in seminars, review documents, and otherwise assist in the work of the institution. Study committees work independently of government, sponsors, and special-interest groups. Continuous oversight and formal anonymous review of the results of the studies enhance objectivity and quality.