fore by the work of ecologists, who attempt to analyze ecosystems as wholes and investigate interactions and other effects in natural systems not immediately apparent to humans. From the ecologists' perspective, which unlike the engineers' does not begin with human wants and needs, concepts like "side-effects" or distinctions between products and by-products are difficult to incorporate into ecosystem analyses. Natural systems or ecosystems are studied, at least in theory, in terms of their overall operation, not their productivity for human wants and needs. Thus, the different attitudes of engineering and ecology toward natural systems can be attributed to their different starting points.

Steven L. Goldman has underscored these differences in approach between engineering and science. He contrasts engineering's theoria, that is, "its characteristic world-view and rationality" with the theoria of the physical sciences (1990, p. 125). Engineering is distinguished by its grounding in context and valuation, with its emphasis on design; science seeks to understand universal and independent natural systems, with a focus on discovery. As Goldman notes, "the problems addressed by the sciences are ... supposed to be given to them by 'Nature'.... Within the practice of science, scientific problems are commonly conceived of as discovered; they are not arbitrary human inventions" (p. 129). On the other hand, "engineering problems are overtly invented.... given to engineers not by a supposed independently existing Nature, but by people who have, for a variety of generally obvious ulterior motives, invented them" (p. 130).3

These differences, however, can be overstated. The emphasis on design in engineering, while perhaps distinct from the focus of analytic physical sciences, is less incompatible with ecological science. This paper is offered as an argument that ecologists and engineers have a great deal in common, and that recognition of that common ground offers significant opportunity for a new twenty-first century synthesis that could give energy and direction to the quest for sustain-ability.

Engineering Students and Ecology

The impetus for this paper came from a recognition of a recurring phenomenon in my course in environmental politics. It seemed that every time the course, a political science course in the College of Arts and Sciences, has been offered, some of the best and most engaged students have been engineering students. While part of this phenomenon can, no doubt, be attributed to the fact that many of these individuals have been excellent students who have performed well in all their classes, it has always seemed that these students not only have done well in all aspects of class performance, but also have exhibited genuine interest in ecology and environmental issues. In short, it has been my impression that these engineering students seem to display a particular attraction to, or affinity for, the course material.4

While the historical and philosophical writings in the course are also popular



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement