INDEX

A

Acid rain, 5

Adaptive management, 51

Agroecosystems

   coevolutionary perspective, 20, 21-22, 24-25

   dispute resolution in, 170

   ecological health as goal of, 102

   grassland grazing, 36

   natural systems vs., 17

Alternative dispute resolution, 169-170

Asiatic clam, 22-23

Assessment of ecosystem health, 15-18

   in applied ecology, 112

   benchmark data, 103, 104

   conflict over methodology, 192-194

   constraints on human perception, 50-53

   in ecological engineering, 119-120

   ecological integrity, 102-105

   for ecologically sensitive project design, 143-144

   reversibility of environmental effects, 58-59

   values implicit in, 47-48

   See also Evaluation of engineering projects;

   Monitoring activities

Assimilative capacity, 3, 9 n.2

Automation, in complex systems, 67

B

Benchmark data, 103, 104

Biodiversity

   characteristics, 195 n.5

   in coevolution of human and natural systems, 21-22, 23

   ecosystem resilience and, 36-37, 39-40

   ecosystem services and, 16-17

   modeling, 55

   pollution response in ecosystems and, 83

   recommendations for maintaining, 27

   replacement species, 17

   worldwide species diversity, 144

Biosphere 2, 15

Biotechnology, 118

Birds, 27

Bonds, environmental assurance, 91-92, 93



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 205
--> INDEX A Acid rain, 5 Adaptive management, 51 Agroecosystems    coevolutionary perspective, 20, 21-22, 24-25    dispute resolution in, 170    ecological health as goal of, 102    grassland grazing, 36    natural systems vs., 17 Alternative dispute resolution, 169-170 Asiatic clam, 22-23 Assessment of ecosystem health, 15-18    in applied ecology, 112    benchmark data, 103, 104    conflict over methodology, 192-194    constraints on human perception, 50-53    in ecological engineering, 119-120    ecological integrity, 102-105    for ecologically sensitive project design, 143-144    reversibility of environmental effects, 58-59    values implicit in, 47-48    See also Evaluation of engineering projects;    Monitoring activities Assimilative capacity, 3, 9 n.2 Automation, in complex systems, 67 B Benchmark data, 103, 104 Biodiversity    characteristics, 195 n.5    in coevolution of human and natural systems, 21-22, 23    ecosystem resilience and, 36-37, 39-40    ecosystem services and, 16-17    modeling, 55    pollution response in ecosystems and, 83    recommendations for maintaining, 27    replacement species, 17    worldwide species diversity, 144 Biosphere 2, 15 Biotechnology, 118 Birds, 27 Bonds, environmental assurance, 91-92, 93

OCR for page 205
--> C California. See San Francisco Bay/San Joaquin Delta Cattle grazing, 36 Chaotic state, 20-21, 40-41 Chemical pollution, 83, 103 Chesapeake Bay, 48 Chlorofluorocarbons, 69 Coevolution, 19-24 Collaboration, ecology-engineering    to convince others, 4    current practice, 2, 97-98, 111    design of development projects, 144-145    goals for, 67-68    need for, 1-2, 105-106, 185    obstacles to, 6, 73    oil development in rain forest, 144-157    opportunities for, 134-135    political context, 132-134    receptivity of students, 130-131, 134    science education and, 75-76    science policy and, 74-75    as scientific enterprise, 73    successful development projects, 143    systems analysis, 131-132, 134-135    See also Ecological engineering Command-and-control systems, 91 Commons model, 50, 65 Communications systems, 70 Compartmental analysis, 84 Complex systems, 4    automation in, 67    coevolutionary processes, 20-21    energy organization in, 83-85    human comprehension, 50, 52-53    natural regulation, 7    policymaking in, 73-74    problem-solving in, 70    quantification of interconnections in, 84-85    revenge theory, 71-72    substitutions/replacements in, 17, 71-72    transportation systems as, 70-71    values implicit in study of, 48 Consumer behavior, 9 Corps of Engineers, U.S. Army, 6, 111, 193-194    resource management philosophy, 187-189 D Darns, 3 Description, scientific, 47-48 Design for environment, 4 Design process    ecological consideration in, 1-2, 111    ecological vs. engineering approach, 130    ecologically sensitive development projects, 143-144    economic conceptualizations, 133, 136 n.7    environmentally harmful outcomes, 2    environmentally sensitive engineering, 68    Niobrara River engineering, 184    oil development project, 148-157    precautionary practice, 5-6    problem definition, 2-4    uncertainty in, 5, 6 Developing world, 67 Differences between ecology and engineering    conceptualizations of sustainability, 129-130    expectations, 6    perception of system resilience, 32-34    problem definition, 105 E Earth Summit (1992), 98-99 Earthquakes, 8 Ecological constraints on engineering    definition of design success, 2-4    ethical consideration, 66, 67, 194-195    indications for, 1-2    modeling, 4    principles for, 66-68    in transportation engineering, 68-70

OCR for page 205
--> Ecological economics, 19    valuation of ecosystem services, 14 Ecological engineering    applied, 116    biotechnology and, 118    conservation ethic, 117-118, 194-195    definitions, 112-113, 114-115    environmental engineering and, 118    goals, 113    historical development, 112, 113-115    as integrative discipline, 123, 125-126    principles of, 115    recent developments, 124-125    resource conservation in, 117    restoration ecology and, 119    role of, 123-124    self-design concept in, 115-116    as system approach, 116-117    systems analysis in, 119-120    See also Collaboration, ecologists and engineers Economics    conceptualizations of ecosystem services, 14-15    conceptualizations of equilibrium, 33    engineering conceptualizations, 133, 136 n.7    environmental accounting, 66-67, 68, 92-94    environmental assurance bonding, 91-92, 93    flexibility in resource management and, 7    identifying ecological costs, 92    individual behavior, 86    market diversity, 83    mixed-unit valuation, 85    modeling system interactions in, 84-85    natural resource depreciation, 66-67    sustainability concepts in, 177    technological uncertainty and, 87-88    temporal orientation, 54    valuation, 59-60    vs. ecosystem health, 23-24 Ecosystem functioning    causes of failure, 191-192    concept of sustainability, 81-85    conservation philosophy, 191-192    constraints on human perception, 50-53    development projects in natural habitats, 141-144    diversity in, 83    ecological resilience, 38-42    engineering production philosophy, 190-191    engineering resilience, 36-38    equilibrium state, 32, 33, 51    health of vs. integrity of, 100-102    hierarchy theory, 51-52    keystone processes, 60    life span assessment, 81    nature of change in, 31-32    near instability, 40-41    production-based vs. conservation-based perspectives, 187-190    as public property, 50    restoration project objectives, 178-179    scalar problems in modeling, 46-50    scientific understanding, 31-32, 47    self-organization in, 115-116    spatial attributes, 32    sustainability, 39, 81-83    threats to, 99-100    tropical rain forest, 144-145    See also Assessment of ecosystem health;    Healthy systems Ecosystem services, 2    in balance with technological services, 24-27    defined, 13-14    ecosystem health and, 15-18    historical use, 20    human technology and, 20-24    human well-being and, 18-19    identification of, 14    perception of, 14    population growth and, 26    recommendations for maintaining, 27    social consumption of, 13-14    technological alternatives, 15    valuation of, 14-15 Ecotechnology, 114 Educational system, 75-76

OCR for page 205
-->    as setting for ecological-engineering collaboration, 130-131, 134, 158-159 Emergency responses, 68 Endothermy, 7, 39-41 Energy    in definition of ecology, 113-114    electricity consumption, 15    optimistic/pessimistic expectations, 88    sustainability of systems and, 82, 83-85 Environmental engineering, 118 Environmental Protection Agency, 173-175 Ethical issues, 66, 67, 72-73, 194-195    avoiding social traps, 90-91 Eutrophication    defined, 82    system functioning, 82-83 Evaluation of engineering projects    ecological considerations in, 106    ecological criteria, 2-4    ecologically sensitive development projects, 142    engineering production philosophy, 190-191    iterative testing process, 170-171, 176 n.5    long-term considerations, 9    multiscalar decision making metamodel for, 57-62    restoration project objectives, 178-179    sustainability issues in, 177 Everglades. See Kissimmee River project Evolutionary processes, 20-25    ecological integrity and, 101    human behavior and, 86    nonpolluting ecosystems, 82 Exotic species, 18, 22-23 Expectations    ability to manage ecosystems, 6-7    differences between ecologists and engineers, 6    regarding technological services, 13 Extinction of species, 23, 25 F Fertility trends, 190 Fisheries management, 37-38 Flow analysis, 84 Forest management, 17, 37, 41-42    oil development in rain forest, 144-145, 149-157 Future generations, valuation issues, 54 G Game theory, 88-89 Global interaction, 56    ecological tariffs, 93-94    environmental accounting, 92-93    environmental awareness, 98-99 Global warming, 5, 16 Grasslands, 4, 36 H Harmful outcomes, 2    in coevolution of human and natural systems, 21-24    environmental assurance bonding against, 91-92, 93    environmental modeling, 57-62    exotic invader species, 22-23    expectations of, among scientists, 6    human capacity to cause, 53    human capacity to prevent, 6-7    in human engineering, 129    implications of uncertainty for policymaking, 5-6    Kissimmee River project, 164    as long-term effects, 8-9    oil exploration/development, 145    recognition of, 97    San Francisco Bay/San Joaquin Delta management, 167-168 Healthy systems    biodiversity, 16-17    change processes, 31-32    characteristics of, 101-102, 195 n.5    evaluation of, 102-105    human well-being and, 18-19, 97    integrity of systems, 100-102    productivity in, 15-18    public understanding, 18-19, 25    resilience, 18

OCR for page 205
-->    restoring ecosystems, 26-27    scalar factors in defining, 47    technological optimism/pessimism, 87-88    thresholds, 17 Hierarchy theory, 51-52, 59-60 Human Development Index, 67 Hydropower, 177 I Illinois Waterway, 187, 192-194, 195 n.1 Indigenous peoples, 150-151 Individual decision making, 9    commons model, 50, 65    determinants of, 19    evolutionary factors, 86    game theory, 88-89    hierarchy theory, 51-52    policy scale, 55-56    social traps in, 86-87    system interactions, 86 Industrial processes, 68 Information feedback in natural systems, 20 Innovation    in policymaking, 91-94    precautionary practice and, 5-6 Input-output analysis, 84, 85 Interdisciplinary initiatives    ecotechnology as integrative discipline, 123-124, 125-126    for policymaking, 97-98 International comparison, quality of life, 67 International relations, 21 Iterative testing process, 170-171, 176 n.5 J Jefferson, Thomas, 74-75 K Keystone processes, 60 Kissimmee River project, 2, 3, 111    litigation over, 171-172    management strategies, 169-170, 178, 179, 182-184    overview, 164-166    public controversy, 169    recent developments, 172    restoration objectives, 179-181    significance of, 163, 172, 175 L Labor-time-saving devices, 71 Language of science, 47-48 Life-cycle analysis    application, 4    ecosystems, 81 Life span    behavior and, 86    quality of life and, 80-81 Local conditions    global considerations, 76, 93    land planning, 68    regional ecosystem management strategies, 7, 16-17    resource management, 17-18, 104 Long-term effects, 8-9    of ecotechnology practice, 124    of engineering in natural habitats, 141-142    social traps, 86-87    technology development and, 86, 106    uncertainty effects and, 87-89    water resource management, 103, 175 M Materials balance approach, 84 Migratory species, 27 Mississippi River, 6, 111, 187, 192-194, 195 n.1 Models    behavior of complex systems, 84    commons concept, 50, 65    decision making metamodel, 57-62    ecological constraints on design, 4    ecological engineering, 116-117    ecosystem failure, 191-192    ecosystem stability, 33-34

OCR for page 205
-->         environmental problems as scalar problems, 46, 55    game theory, 88-89    global ecology, 93    hierarchy theory, 52    multimetric, 104-105    multivariable problems, 71    Newtonian, 45, 46-47    transportation systems, 70-71    uncertainty effects, 5-6, 87-88    values implicit in choice of, 46, 47    water management, 105 Monitoring activities, 7    Kissimmee River flood control, 183-184    long-term, 175    oil development project, 157-159    San Francisco Bay/San Joaquin Delta water management, 174-175 N National Environmental Policy Act, 189, 193, 195 n.2 Network analysis, 84-85 New technology, 5-6 Niobrara River, 3, 178, 184 Non-point-source pollution, 48 Nonrenewable resources, 3 Nonsuch Island, 23 O Oil development/exploration, 3    harmful effects, 145    offshore model, 152-154    pipeline options, 154-157    process, 146-147    rain forest project, 144-157    science and engineering needs, 157-159, 160-161    strategies to minimize impacts, 148-154    sustainability issues, 159-160 Oil exploration    ecologically sensitive projects, 142 Opportunity costs, 6 Organized labor, 99 P Pareto Optimality criterion, 61-62 Pesticides, 21, 40-41 Policy-making    alternative dispute resolution in, 169-170    to avoid social traps, 90    command-and-control approach, 91    conservation philosophy, 192    constant yield goals in, 32    ecological health as goal of, 101-102    engineering production philosophy, 190, 191    environmental knowledge for, 25, 27    environmental modeling for, 55    implications of uncertainty, 5    interaction of engineering and ecology and, 68, 73-75    interdisciplinary initiatives, 97-98    Kissimmee River management, 163, 169-172    metamodel for, 57-62    micromanagement in, 73    motivation for, 19-20    optimistic vs. pessimistic approach, 89    Pareto criterion, 61-62    pluralistic approach, 46    precautionary approach, 5-6, 93    problem formulation, 48    production-based vs. conservation-based approaches, 187-190    recommendations for sustainability, 91-94    San Francisco Bay/San Joaquin Delta management, 173-175    Scalar considerations, 55-56    tax reform, 93    water management, 103-104    waterway navigation system, 192-194 Pollution    boundaries, 3    chemical, 83, 103    definition, 81-82    ecosystem response, 83    energy/entropy characteristics, 82, 83-85    eutrophication as, 82-83

OCR for page 205
-->    evolutionary perspective, 82    polluter assurance bonding against, 91-92, 93    scalar issues in study of, 48    as social trap, 87    sustainable use, 81-82, 83    transportation-related, 69    water, 103 Population growth    ecological threat of, 24-25, 26    optimistic/pessimistic expectations, 88    public understanding of, 19    quality of life and, 74    social goals, 27    Stabilization, 26    trends, 25-26 Precautionary principle, 5-6, 93 Primitive peoples, 24 Probability, uncertainty and, 5-6 Problem definition, 2-4    in concept of sustainability, 79    engineering vs. environmental approach, 105    sociohistorical trends, 65    values implicit in scalar choices, 48 Production-based philosophy    in engineering, 190    limitations of, 190-191    vs. conservation-based approaches, 187-190 Productivity, 7    conceptualizations of natural systems, 135 n.2    ecosystem health and, 15-18    scale discontinuity in ecosystems, 32 Public interest, commons model, 50, 65 Public perception/understanding, 68    to avoid social traps, 90    current awareness of environmental issues, 98-99    of ecosystem health, 18-19, 25, 106    knowledge needs, 27    quantification of ecosystem services, 16    questions of scale, 45-46 Q Quagga mussel, 22-23 Quality of life    in built environment, 67    goals, 72-73    life span considerations, 80-81    obligations of engineering profession, 67-68    population growth and, 74    quality of environment and, 65-66, 100 R Recreational activities, 17 Renewable resources, 3 Resilience of ecosystems, 18    conceptualizations of, 32-34    ecological management for, 38-42    engineering conceptualization, 33-34    engineering management for, 36-38    system variability and, 39-40 Resource management    adaptive, 51    boundaries of use, 3    challenges, 6-8    ecological engineering principles, 117-118    ecological health as goal of, 101-102    economic reliance upon, flexibility and, 7    ecosystem resilience and, 38-42, 51    engineering resilience and, 36-38    human development and, 24-25, 86, 101    innovative policy-making, 91-94    iterative testing process, 170-171, 176 n.5    local vs. global, 17-18    monitoring effects of, 7    natural processes vs., 7    population growth and, 26    production-based vs. conservation-based approaches, 187-192    species replacement, 17 Restoration ecology, 26-27, 52    ecological engineering and, 112, 113, 116, 119    Kissimmee River objectives, 179-181

OCR for page 205
-->    objectives for streams and rivers, 178, 181-182 Revenge theory, 8, 71-72 Rio Summit. See Earth Summit (1992) Risk(s)    de minimis concept, 195 n.4    definition, 5    model for environmental decision making, 57-62 S Safety factors design, 6 San Francisco Bay/San Joaquin Delta    management strategies, 173-175    overview, 166-169    significance of water management experience, 163, 175 Scientific method    applied vs. pure research, 74-75    contributions of, 73    in ecological engineering, 119-120, 125-126    education and training for, 75-76    evaluative content, 47-48 Social engineering, 67 Social traps, 23-24, 86-87    educational prescriptions, 90    policy prescriptions, 90    sociocultural prescriptions, 90-91    technological uncertainty and, 87-89 Social values, 8-9    in adaptive management techniques, 51-52    commons model, 50    determinants of, 50-51    ecosystem services, 14    hierarchical thinking, 52    implicit in environmental models, 46, 47    interdisciplinary examination of, 47    scalar problems, 45, 46, 48    temporospatial scaling in, 53-57, 61    See also Valuation Sociocultural context, 1    avoiding social traps, 90-91    benefits of ecologically sensitive engineering, 2-3    consumption of ecological services, 13-14, 24    evolutionary processes, 86    expectations regarding technological services, 13    identifying ecological costs, 92    individual interests vs. social interests, 8-9    infrastructure as expression, 72    perception of ecological services, 14    policy scales, 55-56    problems of scale in, 45    rain forest development considerations, 145-146, 150-151    science in, 76    See also Social values Spatial/temporal scales    attributes of ecosystem functioning, 32    in concept of sustainability, 79-81    current conceptualizations, 45    in engineering design, 133    environmental problems as scalar problems, 46-50    hierarchy theory, 52    human perception of, 50-53    human values and, 53-57    modeling environmental effects, 58-59    modernist conceptualizations, 45, 46-47    perspectivist view, 45-46    phenomenology, 61 Stabilization    ecological health vs. ecological integrity, 100-102    ecosystem equilibrium, 32, 51    ecosystem resilience, 33-34, 38    population growth, 26    as restoration project objective, 178-179 Standard of living, 25    environmental accounting, 66-67    Human Development Index, 67 Sustainability, 1    conservation philosophy, 191-192    definitions, 9 n.1, 79-81, 177-178    in development projects, 177, 178    ecological concerns, 129-130    ecological engineering goals, 117    economic concept, 177

OCR for page 205
-->    ecosystem services and, 14    engineering conceptualizations, 129    environmental accounting, 92-94    legal threshold, 195 n.4    in natural systems, 39, 41-42, 81-85    prediction of, 79-80    technological development issues, 159-160    temporospatial concepts embedded in, 79-81    temporospatial thinking, 54-55 Systems perspective, 4    coevolution, 19-24    component interaction, 83, 84    concept of resilience, 32-33    concept of sustainability, 9 n.1, 79-81    in ecological engineering, 116-117, 119-120    ecosystem health in, 15-18    eutrophication processes, 82-83    individual behavior in, 86    natural systems, 7    political context, 132-134    revenge theory, 8-9, 71-72    role of diversity, 83    self-organizing behaviors, 115-116    similarities in ecology and engineering, 131-132, 134-135    in water quality monitoring, 175 T Tariffs, 93-94 Tax reform, 93 Taxes, 172 Technological optimism/pessimism, 87-89 Technological services    in balance with ecosystem services, 24-27    current consumption, 13    human development and, 24-25 Threshold concept, 17, 195 n.4 Transportation systems    complexity of, 70-71    environmental issues, 69-70    pollutants, 69 U Uncertainty, 5-6    in origin of social traps, 87-89 Unknown unknowns, 5, 6 Unknowns, 5 Urban populations, 69, 70 V Valuation    determinants of, 51    in economics, 59-60    ecosystem services, 14-15, 16    environmental, in engineering accounting, 66, 68    mixed-unit, 85    scalar problems, 46    spatiotemporal consideration, 52    See also Social values W Water management, 3, 7    benchmark data, 103, 104    California drinking water, 8    Chesapeake Bay cleanup, 48    ecological goals, 177    evaluation of river ecosystems, 4    flood control, 182-184    hydropower initiatives, 177    measurement and evaluation practices, 102-103    multimetric modeling, 104-105    navigation systems, 187, 192-194    policy, 103-104    production-based vs. conservation-based approaches, 187-190    restoration project objectives, 178-179    threats to, 103    See also Kissimmee River project;    San Francisco Bay/San Joaquin Delta Wetlands development, 142, 158 Whooping Cranes, 184 Z Zebra mussel, 22-23

OCR for page 205
This page in the original is blank.