enormous toll on a country's capacity to generate future income. In fact, in a developing country a lower per capita income involving sound, ecologically focused business may actually produce a higher standard of living for its people. The United Nations Development Program has devised the Human Development Index, which ranks countries on the basis of a combination of adjusted per capita gross national product, longevity, and educational attainment. From this is derived an average deprivation index. It is interesting that according to this index the United States ranks sixth worldwide, after Japan: Canada, Norway, Switzerland, and Sweden. With regard to the depreciation of environmental capital, engineers must also be aware of any remote effects of their works.

In the development of complex systems, careful consideration should be given to what should be automated and what should not. Many times in an automated system (e.g., telephone marketing) the function is performed badly and conceals the essence of the situation. Automation commonly treats everything in an inanimate way. Incommensurable factors, individual differences, local context, and the weighting of evidence are often overlooked though embedded in these factors may be the essence of what is important. With automation the process may be subtly transformed; the process may run smoothly, it may be productive, but it may also be out of line with the nature of things and the essential problems. Such a situation can lead to artificial or unnatural boundary conditions with regard to interactions with other systems.

On the other hand it is ethically proper that engineering be applied in a timely manner to ensure survival by diminishing human disease, drudgery, and the threat of starvation; but in so doing the application of engineering concepts takes on an ethical component as well, to ensure that new approaches improve the quality of human life. In the developing world, technological applications should seek to employ native labor and local resources as much as possible, should serve to maintain the natural environment as well as traditional customs, and should focus on teachable know-how. This may not be an easy assignment and will require an application of social knowledge beyond what is commonly taught or expected of the engineer today. Perhaps a new discipline of social engineering should be considered in which the mix of the two topics would take on a more integrated structure.

These considerations suggest some key research goals and policy objectives.

  • The "built environment" should have long-term integrity that can enhance the quality of life while taking into account the interactions among the various elements, namely, energy, transportation, communication (or information), public health and safety (e.g., water and waste), industry, construction, the environment, and others. The idealist's future goals for infrastructure development must consider such features as quality, flexibility, adaptability, reliability, cost-effectiveness, and, perhaps most important, crisis management, especially for the complex city.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement