observed in the range of 1-1000 pmol. The blends may contain various configurational isomers of the genuine pheromones as well as mixtures of enantiomers. Higher plants produce the C11 hydrocarbons from dodeca3,6,9-trienoic acid; brown algae exploit the family of icosanoids for biosynthesis of the same compounds. The biosynthetic routes comprise several spontaneously occurring pericyclic reactions such as [3.3]-sigma-tropic rearrangements, [1.7]-hydrogen shifts, and electrocyclic ring closures. All pheromones are (a)biotically degraded by ubiquitous oxidative pathways involving singlet oxygen or hydroxyl radicals, which may be produced through the agency of heavy metals, huminic acids, or light.

REFERENCES

1. Müller, D.G., Jaenicke, L., Donike, M. & Akintobi, T. (1971) Science 171, 815-817.

2. Jaenicke, L. & Boland, W. (1982) Angew. Chem. Int. Ed. Engl. 94 , 643-653.

3. Maier, I. & Müller, D. G. (1986) Biol. Bull. 170, 145-175.

4. Boland, W. (1987) Biol. Unserer Zeit 17, 176-185.

5. Jaenicke, L. (1988) Bot. Acta 101, 149-159.

6. Maier, I. (1993) Plant Cell Environ. 16, 891-907.

7. Maier, I. & Müller, D. G. (1982) Protoplasma 113, 137-143.

8. Maier, I. (1987) in Algal Development (Molecular and Cellular Aspects), eds. Wiessner, W., Robinson, D. G. & Starr, R. C. (Springer, Berlin), pp. 66-74.

9. Boland, W. & Müller, D. G. (1987) Tetrahedron Lett. 28, 307-310.

10. Wirth, D., Fischer-Lui, I., Boland, W., Icheln, D., Runge, T., König, W. A., Phillips, J. & Clayton, M. (1992) Helv. Chim. Acta 75, 734-744.

11. Boland, W., Marner, F.-J., Jaenicke, L., Müller, D. G. & Fölster, E. (1983) Eur. J. Biochem. 134, 97-103.

12. Hay, M. E., Duffy, J. E., Fenical, W. & Gustafson, K. (1988) Mar. Ecol. Prog. Ser. 48, 185-192.

13. Derenbach, J. B. & Pesandeo, D. (1986) Mar. Chem. 19, 337-432.

14. Jüttner, F. & Wurster, K. (1984) Limnol. Oceanogr. 29, 1322-1324.

15. Bohlmann, F., Zdero, C., Berger, A., Suwita, A., Mahanta, P. & Jeffrey, C. (1979) Phytochemistry 18, 79-93.

16. Boland, W., Jaenicke, L. & Brauner, A. (1982) Z. Naturforsch. 37C, 5-9.

17. Kollmannsberger, H. & Berger, R. G. (1992) Chem. Mikrobiol. Technol. Lebensm. 14, 81-86.

18. Grob, K. & Zürcher, F. (1976) J. Chromatogr. 117, 285-294.

19. Keitel, J., Fischer-Lui, I., Boland, W. & Müller, D. G. (1990) Helv. Chim. Acta 73, 2101-2112.

20. Müller, D. G. (1976) Z. Pflanzenphysiol. 80, 120-130.

21. Boland, W., Jakoby, K., Jaenicke, L. & Müller, D. G. (1980) Z. Naturforsch. 36C, 262-271.

22. Boland, W., Jaenicke, L. & Müller, D.G. (1981) Justus Liebigs Ann. Chem. 2266-2271.

23. Müller, D. G., Gassmann, G. & Lüning, K. (1979) Nature (London) 279, 430-431.

24. Marner, F.-J., Müller, B. & Jaenicke, L. (1984) Z. Naturforsch. 39C, 689-691.

25. Müller, D. G., Boland, W., Becker, U. & Wahl, T. (1988) Biol. Chem. Hoppe-Seyler 369, 655-659.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement