A factor not often appreciated that also contributed to insect success is the extraordinary chemical versatility of these animals. Insects produce chemicals for the most diverse purposes—venoms to kill prey, repellents and irritants to fend off enemies, and pheromones for sexual and other forms of communication. The glands responsible for production of these substances are most often integumental, having been derived by specialization of localized regions of the epidermis. In insects, as in arthropods generally, the epidermis is fundamentally glandular, being responsible for secretion of the exoskeleton. In their acquisition of special glands, arthropods appear to have capitalized upon the ease with which epidermal cells can be reprogrammed evolutionarily for performance of novel secretory tasks. The glandular capacities of arthropods are known to anyone who has collected these animals in the wild. Arthropods commonly have distinct odors and are often the source of visible effluents that they emit when disturbed (Figure 1). Much has been learned in recent years about the function and chemistry of arthropod secretions. The insights gained have been fundamental to the emergence of the field of chemical ecology. Our purpose here is to focus on some aspects of the secretory chemistry of these animals, with emphasis on a few recent discoveries.


In our earliest collaborative publication, we described the dramatic chemical defense mechanism of the whip scorpion, Mastigoproctus giganteus (6). This ancient arachnid is able to spray a well-aimed stream of ˜85% acetic acid [CH3CO2H] containing 5% caprylic acid [CH3(CH2)6CO2H] at an assailant. The role of the caprylic acid proved to be especially interesting: it facilitates transport of the acetic acid through the waxed epicuticle of an enemy arthropod. It is likely that this simple strategy of using a lipophilic agent to enable a more potent compound to penetrate a predator's cuticle has helped this species to survive for as long as 400 million years. Many other independently evolved arthropod defensive secretions make use of the same strategy (9). The whip scorpion defense mechanism helped us to appreciate the fact that chemistry need not be complex to be effective. The virtue of simplicity is further illustrated by the defensive use of mandelonitrile and benzoyl cyanide, easily decomposed precursors of hydrogen cyanide (HCN), by certain millipedes and centipedes (10, 11).

While arthropod defensive secretions often rely for their effect on well-known aliphatic acids, aldehydes, phenols, and quinones, there are many cases in which compounds capable of whetting the appetite of any natural products chemist are utilized. For example, steroids play a

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement