species of the legionary genus Onychomyrmex, both group raiding and colony emigrations are organized by trails laid with a sternal gland. However, chemical orientation appears to be supplemented by homing signals deposited from a basitarsal gland in the hindlegs (19).

Homing signals are often colony specific. A still finer level of specificity has recently been demonstrated among individual colony members, a surprising finding, given the prevailing view that individual differentiation among social insect workers is weak. Individual-specific orientation trails have been discovered in the ants Pachycondyla tesserinoda and Leptothorax affinis (20, 21), among others. The source of these highly specific markers and how they are chemically composed are not yet known.

In general, specificity in a multicomponent signal seems to be a form of modulation. Assuming that modulatory functions presuppose the existence of the behavior being modulated, a possible evolutionary route to signal specificity can be proposed (3).

The production of simple semiochemicals, releasing simple, anonymous reactions, is subject to the inevitable imprecision of all biosynthetic processes. The resulting degree of variation may well be perceptible to the receiver's sensory system, but it will ordinarily have no effect on the response to the signal. However, should an adaptive advantage happen to correlate with any of the available variants, selection will favor individuals which respond differently on the basis of these specific characteristics—i.e., modulation of the original response. Take as an example undecane, the anonymous alarm signal of many species of the subfamily Formicinae. It is usually the most abundant product in the formicine Dufour's glands. However, other hydrocarbons are also present and the total mixture is often species specific (11). Thus, during alarm behavior undecane will be discharged together with a blend of other hydrocarbons. If, say, genetically similar colony members tend to produce similar hydrocarbon patterns, the signal may come to be modulated by this added specificity, informing workers whether nestmates or aliens are releasing the alarm. Once the presence and/or proportions of additional components significantly affect the response to the basic releaser in an adaptive manner, selection is expected to improve their distinctiveness and stereotyping.


This evolutionary process by which a phenotypic trait is altered to serve more efficiently as a signal is called ritualization. Commonly, the process begins when some movement, anatomical feature, or physiolog-

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement