and the retrieval of the food object are advanced by 1-2 min as a consequence of stridulation (22).

It is conceivable that such rather unspecific modulatory signals obtain more specific significance in the communication process. A striking example is that of the leaf-cutter ant Atta cephalotes (24).

Atta workers stridulate when cutting an attractive leaf. Stridulatory vibrations migrate along the body of the leaf-cutting ant and are led into the substrate through the ant's head. We have evidence that the vibrations caused by the stridulation mechanically facilitate the cutting process. We could, in addition, demonstrate that the substrate-borne vibrations not only enhance the chemical recruitment signal, laid with poison gland secretions, but also suffice to attract nestmates to the cutting site. We therefore hypothesize that a motor pattern whose original function might have been to support the cutting process, secondarily became a modulatory signal, and subsequently has further evolved to function as an independent recruitment signal. In fact, Markl (25) has demonstrated that in another behavioral context the stridulatory substrate vibrations in Atta serve as stress and rescue signals.

Another striking example of the evolution of multicomponent signals in ant communication is found in the multiple recruitment system of the weaver ants (Oecophylla) (26). Workers of this genus utilize no fewer than five recruitment systems: for summoning nestmates to new food sources, to new terrain, for emigration, to territorial defense, and (short range) to territorial intruders. Although the messages differ from one another strongly, they are built out of pheromones from two or three organs—the rectal, sternal, and possibly also the mandibular gland—together with a modest array of stereotyped movements and tactile stimuli. The specificity of each of the recruitment systems comes principally from the combinations of chemical and tactile elements. For example, both recruitment to food and recruitment to territorial defense are guided by pheromones from the rectal gland. Territorial defense is further specified by forward jerking movements which closely resemble maneuvering during actual attack behavior. We have therefore interpreted the signals to be a ritualized version, "liberated" during evolution to serve as a signal when a nestmate is encountered rather than an enemy. When workers recruit nestmates to food, they use a wholly different set of movements. They wave their heads laterally while opening their mandibles. The movement resembles that of food offering and may have derived from that through a ritualization process. Other communicative motor patterns in ants—such as short runs or jerking or wagging motions employed during recruitment communication to summon nestmates to food sources, to nest sites, or to the defense of territories (26)—may in part have evolved from motor displays that originally served as general

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement