that requires a systems oriented approach. The challenge to management includes economic and organizational change as well as opportunities for products and markets.

Industrial ecology also requires the consideration of the relationship between natural ecology and industrially generated emissions, discharges, and wastes. This necessitates that a firm seek answers beyond its boundaries. Hydro Aluminum is working through the Norwegian aluminum industry, in cooperation with Norwegian universities and research institutes, to carry out extensive studies of the effects and, when possible, the dose-response characteristics of emissions and discharges from its aluminum plants. This scientifically demanding task is intended to define targets for future emission and discharge standards, In effect, these studies will define research and development objectives for the company's processes and provide information on the overall life cycle of aluminum.

Hydro Aluminum also recognizes the need for life cycle data on products in the markets for each of the company's operations or divisions. Some data will be common for all downstream activities, others will be specific for a particular division in a particular market. Such data are needed to help the company develop its strategies and to provide specific information about environmental communications material. In cooperation with the European oil industry, Hydro Aluminum is working to establish common life cycle data for typical products.


The general findings from the initial projects undertaken at Hydro Aluminum illustrated the complexity of the life cycle perspective. The complexity is revealed in product- and market-specific projects, where the company must identify challenges and needed improvements, consider building new business relationships, and consider expanding cooperation within existing relationships. Taking environmental considerations into account in making business decisions has resulted in improvements in several areas.

Process and In-House Activities

In addition to the ongoing EHS efforts, the focus on process has led to energy-efficiency improvements. The obvious means of improving energy use in processes is to adopt technologies that provide that advantage. Hydro Aluminum has initiated energy-efficiency improvement programs in all its Norwegian plants and is collecting life cycle data to link total energy consumption to products from the various plants. The life cycle perspective also suggests that the company should recover as much aluminum as possible from downstream recycling activities; processing aluminum from recycled aluminum products requires much less energy than does processing aluminum from virgin sources.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement