Page 20

and video formats—as a product itself or as a complement to physical or tangible products.1

Today's increasingly sophisticated information technologies cover a wide range of technical progress:

•  Microprocessors and workstations are increasingly important to the computing infrastructure of companies and the nation. Further increases in speed and computational power today come from parallel or distributed processing with many microcomputers and processors rather than faster supercomputers.

•  Special-purpose electronic hardware is becoming easier to develop. Thus, it may make good sense to build specialized hardware optimized for performance, speed, or security with respect to particular tasks; such specialized hardware will in general be better adapted to these purposes than general-purpose machines applied to the same tasks.

•  Media for transporting digital information are rapidly becoming faster (e.g., fiber optics instead of coaxial cables), more flexible (e.g., the spread of wireless communications media), and less expensive (e.g., the spread of CD-ROMs as a vehicle for distributing digital information). Thus, it becomes feasible to rely on the electronic transmission of larger and larger volumes of information and on the storage of such volumes on ever-smaller physical objects.

•  Convergence of technologies for communications and for computing. Today, the primary difference between communications and computing is the distance traversed by data flows: in communications, the traversed distance is measured in miles (e.g., two people talking to each other), while in computing the traversed distance is measured in microns (e.g., between two subcomponents on a single integrated circuit). A similar convergence affects companies in communications and in computing—their boundaries are blurring, their scopes are changing, and their production processes overlap increasingly.

•  Software is increasingly carrying the burden of providing functionality in information technology. In general, software is what gives hardware its functional capabilities, and different software running on the same hardware can change the functionality of that hardware entirely. Since software is intangible, it can be deployed widely on a very short

1Citations to a variety of press accounts can be found in Computer Science and Telecommunications Board (CSTB), National Research Council, Information Technology and Manufacturing: A Research Agenda, National Academy Press, Washington, D.C., 1993; CSTB, Information Technology in the Service Society: A Twenty-First Century Lever, 1993; CSTB, Realizing the Information Future: The Internet and Beyond, 1994; CSTB, Keeping the Computer and Communications Industry Competitive: Convergence of Computing, Communications, and Entertainment, 1995; and CSTB, The Unpredictable Certainty: Information Infrastructure Through 2000, 1996.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement