National Academies Press: OpenBook
« Previous: G TREATMENT OPTIONS QUERY
Suggested Citation:"H EMERGING MONITORING TECHNOLOGIES." National Research Council. 1996. Stemming the Tide: Controlling Introductions of Nonindigenous Species by Ships' Ballast Water. Washington, DC: The National Academies Press. doi: 10.17226/5294.
×

APPENDIX H Emerging Monitoring Technologies

ADENOSINE TRIPHOSPHATE ANALYSIS

Perhaps the most highly developed monitoring method for viable biological activity is the measurement of adenosine triphosphate (ATP). This analysis has been used by biologists for many years to determine the presence or absence of viable activity. The biochemical energy system, ATP, is only present when biological activity is occurring; ATP is absent from inactive biological material. Analysis for ATP is well defined and is performed with common laboratory equipment. There has been little change in ATP methods over the past five years. ATP must be extracted from cells to be stabilized before analysis. This procedure has been slightly simplified with the use of nitric acid as an extractant and new photometers have been developed for field use. These handheld photometers are relatively inexpensive ($400) and allow the presence of ATP to be determined after extraction.

ATP levels decrease over a period of minutes or hours after cell death. Therefore, the technique is awkward to use for disinfection processes, as some ATP remains for a variable period of time after treatment. However, the technique can be calibrated for a given disinfection process to account for the time variability of measurements. The ATP content of cells varies widely with cell size; therefore, ratios of nucleic acids or protein to cell size are perhaps most representative of population viability. Such ratios would need to be generated through research efforts for standardized monitoring of ballast water microbial populations. Despite the aforementioned limitations, the ATP analysis technique does have universal application and has been shown to be effective for planktonic and benthic organisms, including both heterotrophic and autotrophic procaryotes and eucaryotes (Herbert, 1990).

Suggested Citation:"H EMERGING MONITORING TECHNOLOGIES." National Research Council. 1996. Stemming the Tide: Controlling Introductions of Nonindigenous Species by Ships' Ballast Water. Washington, DC: The National Academies Press. doi: 10.17226/5294.
×

RNA/DNA ANALYSES

A second group of promising monitoring techniques includes the determination of RNA/DNA ratios, enzyme analyses, and measurements of lipid content. These analyses of eucaryotic or procaryotic populations can be streamlined, but all currently require extractions. The analyses for each of the biological materials discussed above are simple to quantify and could be adapted for use on board ship. As with ATP monitoring, the analyses would need to be correlated with actual ballast water populations for predictive purposes. These analyses would probably require some preparation on the part of crew members, but the extractions and chemical additions could be simplified to be analogous to swimming pool analyses. Specifically, safe, premeasured portions of chemical additives and small amounts of glassware could be supplied to generate a visible residual. The residue could then be readily analyzed colorimetrically on board ship.

Surrogate methods of analysis, such as ATP analysis and determination of RNA/DNA ratios, may be particularly useful if on board treatment procedures such as filtration or disinfection are used. In these cases, it would only be necessary to determine the absence or presence of biological materials such as ATP or DNA to indicate a high degree of treatment effectiveness. Such monitoring processes will probably be the least expensive to implement on board ship but will require some training to facilitate the analysis by crew members.

FLOW CYTOMETRIC TECHNIQUES

A promising technique that could eventually be applied to monitoring ballast water for unwanted biological organisms is flow cytometry. This technique uses a modification of a typical Coulter counter system and can be operated in a flow-through mode. The equipment allows for a small passage of water through an aperture of preset size (usually 2 to 20 µm). Organisms that pass through this aperture can be measured by the cytometer. The system not only quantifies the size and volume of organisms passing through the orifice, but can also detect the natural fluorescence associated with the presence of chlorophyll. Therefore, flow cytometry can be used to quantify all microorganisms without an outside excitation. This equipment is currently available commercially and has been installed and operated on research vessels where its portability, while requiring some improvement, has been proven.

A flow cytometer could also be used to identify the presence of specific organisms if either dyes or DNA/RNA probes were added to the water prior to measurement. For instance, dyes added to a sample of water before passage through the flow cytometer affect the membrane potential of the cells. This potential can be detected by the flow cytometer, and it will be different depending on whether a cell is active or inactive. Because inactive cells have no induced membrane potential, the viability of organisms passing through the cytometer can be determined.

Suggested Citation:"H EMERGING MONITORING TECHNOLOGIES." National Research Council. 1996. Stemming the Tide: Controlling Introductions of Nonindigenous Species by Ships' Ballast Water. Washington, DC: The National Academies Press. doi: 10.17226/5294.
×

A sample of ballast water incubated with specific DNA probes will hybridize with known sections of a genome of specific target organisms, such as unwanted dinoflagellates. These organisms can be detected by the cytometer. Therefore, specific taxonomic groups can be identified automatically using a flow cytometer with the addition of RNA or DNA probes. A great amount of research work is currently going on in the United States to develop specific DNA probes as a tool for ecological application (see, for example, Fell et al., 1992).

Because of its specialized nature, the main drawback to the use of flow cytometry is expense, and unless a simplified version becomes available it is not clear that ships would voluntarily use such equipment on board.

OTHER AUTOMATED TECHNIQUES

Other possible procedures that may be adapted for automated shipboard use to determine the quality of ships ballast water are immunofluorescence, specific DNA probes, and extractable lipid phosphate analyses. These techniques are of interest because they allow identification of specific taxonomic groups and ships could determine if they had a specific organism within their ballast water that would not be accepted in a port of call. An analytical procedure with this capability would obviate the need for extensive research efforts to correlate surrogate analyses to the presence of specific unwanted species. Development of automated forms of these analyses would permit a specific identification that could be rapidly implemented to assist in controlling introductions of selected species.

Using specific DNA probes in flow cytometry was discussed above. Research on lipid phosphates has not received much recent attention, but information is available from previous research. Lipids serve as a major form of energy storage in plant and animal tissues. They are the principal components of membranes and maintain the structural integrity of cells. Therefore, monitoring the presence or absence of lipids indicates the overall biological activity of a water sample. Lipids are routinely separated and analyzed using high-pressure liquid chromatography (Christie, 1987). Both DNA probes and lipid phosphate techniques would require more development before they could be used as a routine tool for monitoring ballast water.

Perhaps the most promising of the group, however, is the immunofluorescence technique that uses antigen-antibody reactions to implant fluorescent molecules on viable biological material. This procedure is currently the subject of a substantial research effort by the U.S. Food and Drug Administration to identify unwanted toxic marine phytoplankton. Efforts are under way to identify antibody/antigen reactions specific to toxic phytoplankton such that fluorescent compounds can be selectively attached to these organisms. Once toxic phytoplankton have been ''tagged" in this way, they are easily identified using either flow cytometry or simpler photometry. If refined, this technique would provide a method to identify selected members of the biota within ballast water samples. However, the high level of specificity is accompanied by high equipment cost.

Suggested Citation:"H EMERGING MONITORING TECHNOLOGIES." National Research Council. 1996. Stemming the Tide: Controlling Introductions of Nonindigenous Species by Ships' Ballast Water. Washington, DC: The National Academies Press. doi: 10.17226/5294.
×

REFERENCES

Christie, W.W. 1987. High Pressure Liquid Chromatography and Lipids. Elmsford, New York: Pergamon Press.


Fell, J.W., A.S. Tallman, and M. Lutz. 1992. Partial rRNA sequences in marine yeasts: A model for identification of marine eukaryotes. Molecular Marine Biology and Biotechnology 1(3): 175–186.


Herbert, R.A. 1990. Methods for enumerating micro-organisms and determining biomass in natural environments. Pp. 1–29 in Methods in Microbiology, eds. R. Grigorova and J.R. Norris. New York: Academic Press.

Suggested Citation:"H EMERGING MONITORING TECHNOLOGIES." National Research Council. 1996. Stemming the Tide: Controlling Introductions of Nonindigenous Species by Ships' Ballast Water. Washington, DC: The National Academies Press. doi: 10.17226/5294.
×
This page in the original is blank.
Suggested Citation:"H EMERGING MONITORING TECHNOLOGIES." National Research Council. 1996. Stemming the Tide: Controlling Introductions of Nonindigenous Species by Ships' Ballast Water. Washington, DC: The National Academies Press. doi: 10.17226/5294.
×
Page 122
Suggested Citation:"H EMERGING MONITORING TECHNOLOGIES." National Research Council. 1996. Stemming the Tide: Controlling Introductions of Nonindigenous Species by Ships' Ballast Water. Washington, DC: The National Academies Press. doi: 10.17226/5294.
×
Page 123
Suggested Citation:"H EMERGING MONITORING TECHNOLOGIES." National Research Council. 1996. Stemming the Tide: Controlling Introductions of Nonindigenous Species by Ships' Ballast Water. Washington, DC: The National Academies Press. doi: 10.17226/5294.
×
Page 124
Suggested Citation:"H EMERGING MONITORING TECHNOLOGIES." National Research Council. 1996. Stemming the Tide: Controlling Introductions of Nonindigenous Species by Ships' Ballast Water. Washington, DC: The National Academies Press. doi: 10.17226/5294.
×
Page 125
Suggested Citation:"H EMERGING MONITORING TECHNOLOGIES." National Research Council. 1996. Stemming the Tide: Controlling Introductions of Nonindigenous Species by Ships' Ballast Water. Washington, DC: The National Academies Press. doi: 10.17226/5294.
×
Page 126
Next: GLOSSARY AND CONVERSIONS »
Stemming the Tide: Controlling Introductions of Nonindigenous Species by Ships' Ballast Water Get This Book
×
Buy Hardback | $58.00 Buy Ebook | $46.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The European zebra mussel in the Great Lakes, a toxic Japanese dinoflagellate transferred to Australia—such biologically and economically harmful stowaways have made it imperative to achieve better management of ballast water in ocean-going vessels.

Stemming the Tide examines the introduction of non-indigenous species through ballast water discharge. Ballast is any solid or liquid that is taken aboard ship to achieve more controlled and safer operation. This expert volume:

  • Assesses current national and international approaches to the problem and makes recommendations for U.S. government agencies, the U.S. maritime industry, and the member states of the International Maritime Organization.
  • Appraises technologies for controlling the transfer of organisms—biocides, filtration, heat treatment, and others—with a view toward developing the most promising methods for shipboard demonstration.
  • Evaluates methods for monitoring the effectiveness of ballast water management in removing unwanted organisms.

The book addresses the constraints inherent in ballast water management, notably shipboard ballast treatment and monitoring. Also, the committee outlines efforts to set an acceptable level of risk for species introduction using the techniques of risk analysis.

Stemming the Tide will be important to all stakeholders in the issue of unwanted species introduction through ballast discharge: policymakers, port authorities, shippers, ship operators, suppliers to the maritime industry, marine biologists, marine engineers, and environmentalists.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!