National Academies Press: OpenBook
« Previous: GENERAL COMMENTS
Suggested Citation:"REFERENCES." National Research Council. 1996. Database Needs for Modeling and Simulation of Plasma Processing. Washington, DC: The National Academies Press. doi: 10.17226/5434.
×
Page 45
Suggested Citation:"REFERENCES." National Research Council. 1996. Database Needs for Modeling and Simulation of Plasma Processing. Washington, DC: The National Academies Press. doi: 10.17226/5434.
×
Page 46

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

ELECTRON COLLISION PROCESSES 45 It is entirely feasible to construct an electronic database including sources of data for compounds used in plasma processing and files of the corresponding numerical data. Maintained as an ongoing effort and distributed using modem technologies, such a database would improve the efficiency of efforts to model and simulate plasma reactors. FINDINGS Data for electron-neutral collisions are sketchy at best for most species of interest in plasma processing, although some species, such as SiH4 and CF4, have received considerable attention. However, little information is available for dissociation products or for species in excited states. Recent progress in computational methods based on quantum scattering offers the possibility that the costly and time-consuming experiments may be augmented or even replaced by large-scale computation. REFERENCES 1. T.R. Hayes, R.D. Wetzel, and R.S. Freund, Phys. Rev. A 35:578 (1987); R.S. Freund, R.C. Wetzel, R.J. Shul, and T.R. Hayes, Phys. Rev. A 41:3575 (1990). 2. V. Tarnovsky, A. Levin, H. Deutsch, and K. Becker, J. Phys. B 29:135-49 (1996); R. Celiberto and T.N. Rescigno, Phys. Rev. A 47:1939 (1993). 3. R. Basher, M. Schmidt, and H. Deutsch, Contrib. Plasma Phys. 35:375-94 (1995); S. McGinnis, K. Riehl, and P.D. Haaland, Chem. Phys. Lett. 232:99 (1995); R. Basner, R. Foest, M. Schmidt, F. Sigeneger, P. Kurunczi, K. Becker, and H. Deutsch, Int. J. Mass Spectrom. Ion Processes 153(1):65 (1996). 4. A. Blanks, A.E. Tabor, and K. Becker, J. Chem. Phys. 86:4871 (1987). P.G. Gilbert, R.B. Siegel, and K. Becker, Phys. Rev. A 41:5594 (1990). 5. T. Nakano, H. Toyoda, and H. Sugai, Jpn. J. Appl. Phys. 30:2908 (1991); T. Nakano, H. Toyoda, and H. Sugai, Jpn. J. Appl. Phys. 30:2912 (1991); M. Ito, M. Goto, H. Toyoda, and H. Sugai, Contrib. Plasma Phys. 35:405 (1995); H. Sugai, H. Toyoda, T. Nakano, and M. Goto, Contrib. Plasma Phys. 35:415 (1995). 6. T.N. Rescigno, Phys. Rev. A 50:1382 (1994); T.N. Rescigno, Phys. Rev. A 51:329 (1995). 7. I. Iga, M.V.V.S. Rao, S.K. Srivastava, and J.C. Nogueira, Z. Phys. D 24:111 (1992). 8. P. Haaland, J. Chem. Phys. 93:4066 (1990). 9. L.G. Christophorou, in Nonequilibrium Processes in Partially Ionized Gases, ed. M. Capitelli and J.N. Bardsley (Plenum Press, New York, 1990). 10. See, for example, E. Beaty, J. Dutton, and L.C. Pitchford, A Bibliography of Electron Swarm Data, JILA Information Center Report No. 20 (December 1979). 11. R. Nagpal and A. Garscadden, "Low-Energy Collision Cross Sections for SiH4," J. Applied Phys. 75:703 (1994). 12. R.A. Bonham, "Electron Impact Cross Section Data for CF4," Jpn. J. Applied Phys. 1 33:4157 (1994). 13. H. Sugai, H. Toyoda, T. Nakano, and M. Goto, Contrib. Plasma Phys. 35:415 (1995). 14. R. Nagpal and A. Garscadden, "Electron Collision Cross Section of Boron Trichloride," Applied Phys. Lett. 64(13):1626 (1994).

ELECTRON COLLISION PROCESSES 46

Next: INTRODUCTION »
Database Needs for Modeling and Simulation of Plasma Processing Get This Book
×
Buy Paperback | $47.00 Buy Ebook | $37.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

In spite of its high cost and technical importance, plasma equipment is still largely designed empirically, with little help from computer simulation. Plasma process control is rudimentary. Optimization of plasma reactor operation, including adjustments to deal with increasingly stringent controls on plant emissions, is performed predominantly by trial and error. There is now a strong and growing economic incentive to improve on the traditional methods of plasma reactor and process design, optimization, and control. An obvious strategy for both chip manufacturers and plasma equipment suppliers is to employ large-scale modeling and simulation. The major roadblock to further development of this promising strategy is the lack of a database for the many physical and chemical processes that occur in the plasma. The data that are currently available are often scattered throughout the scientific literature, and assessments of their reliability are usually unavailable.

Database Needs for Modeling and Simulation of Plasma Processing identifies strategies to add data to the existing database, to improve access to the database, and to assess the reliability of the available data. In addition to identifying the most important needs, this report assesses the experimental and theoretical/computational techniques that can be used, or must be developed, in order to begin to satisfy these needs.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!