National Academies Press: OpenBook
« Previous: 2 Three Futures for Glass
Suggested Citation:"3 Special Applications of Glass." National Research Council. 1996. Glass as a Waste Form and Vitrification Technology: Summary of an International Workshop. Washington, DC: The National Academies Press. doi: 10.17226/5488.
×

3
Special Applications of Glass

At least pertaining to issues in the United States, several cases were discussed at the workshop in which vitrification is being considered or used for new and special applications.

1. At the Savannah River Site, a pilot plant has been built to vitrify americium and curium to provide a safe package in which to transfer the material to Oak Ridge National Laboratory for later use. Processing is scheduled to begin in 1998. In this case the glass must provide a safe package rather than serve as a long-term barrier. The glass must be mechanically and thermally stable for a short time and relatively easily dissolved in order to recover the americium and curium. Savannah River also is evaluating this process for the vitrification of neptunium and plutonium solutions. Processing for the americium and curium and also for the neptunium (due to protactinium-233 in growth) must be done in a hot cell.

2. The United States and Russia have an increasing amount of weapons-grade plutonium recovered from dismantled nuclear weapons. Several options are being considered for disposition of this material. The principal options are those recommended in Management and Disposition of Excess Weapons Plutonium: Reactor-Related Options of the National Academy of Sciences (1995). The purpose of all options is to make it as difficult to obtain the weapons plutonium as it is to extract it from reactor spent fuel. This is the "spent fuel standard" developed in another report, Management and Disposition of Excess Weapons Plutonium (National Academy of Sciences, 1994). One of the preferred options is to mix the plutonium with high-level waste and vitrify the mixture. In this case the purpose of the glass is to immobilize both the plutonium and the radioactive waste in a form that makes it difficult to extract the plutonium. In addition to the repository-type criteria for the high-level waste glass (e.g., durability), the plutonium itself introduces additional complications, primarily related to concerns for criticality. The melter process must not lead to an accumulation of a critical mass of plutonium (4 to 10 kg), and the glass should not release sufficient plutonium during long-term alteration of the glass such that precipitation and concentration lead to criticality.

These issues have not been examined sufficiently, at least in the United States, to conclude what plutonium loading is possible or should be used. The "can-in-canister" approach was mentioned at the workshop, a subject about which many questions remain to be addressed, including whether it meets the "spent fuel standard." With this concept, small cans of plutonium-loaded glass are placed in a larger canister that is filled with a glass containing HLW. The high level of radioactivity from the HLW glass prevents easy handling of the canister and reduces the retrievability of the plutonium.

Suggested Citation:"3 Special Applications of Glass." National Research Council. 1996. Glass as a Waste Form and Vitrification Technology: Summary of an International Workshop. Washington, DC: The National Academies Press. doi: 10.17226/5488.
×
Page 19
Next: 4 Conclusions »
Glass as a Waste Form and Vitrification Technology: Summary of an International Workshop Get This Book
×
Buy Paperback | $50.00
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF
  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!