Cover Image


View/Hide Left Panel

Subsurface barriers are likely to be effective as a temporary measure to prevent migration of contaminants of concern while more effective removal or neutralization technologies are developed and demonstrated. In addition, some subsurface barriers appear to offer the potential for long-term containment of contaminants. Subsurface barriers have been used in the private sector for nearly 30 years, and vertical cutoff walls have been constructed to depths of several hundreds of feet. The installation of subsurface horizontal barriers beneath large structures or contaminated areas (such as under a tank farm) is likely to challenge current installation technology.

Work is still- needed in the design of surface and subsurface barriers that would lead to more effective construction and testing, as well as minimizing costs without jeopardizing protection to the public and the environment. Some workshop participants suggested that research and development efforts in barriers need to be continued by DOE in areas such as (1) collection and use of both laboratory and field data to advance the development and application of mathematical models and to bring about greater confidence in model predictions regarding barrier system performance, and (2) techniques for monitoring migration of contaminants contained by barriers and for detecting defects in barriers.

Participants discussed the challenge of pursuing innovative containment technology within the DOE waste complex, addressing both regulator and stakeholder skepticism associated with unproved approaches, plus the need for selecting experienced contractors within the DOE procurement system. A participant noted that the industry is not sufficiently mature to enable companies to take legal responsibility for emplacement of barriers requiring long-term integrity. It was suggested that DOE and regulators might consider the approach taken in Europe, where the contractor accepts liability related to substandard performance of the containment system for a period of 10 years. Over this period, it is anticipated that the technology may improve such that further modifications to the system, if necessary, may act to ensure satisfactory performance for an extended time.

It was noted that data on the effective performance lifetime as a function of climate, hydrology, and geology should be compiled for selected barriers constructed of both natural and synthetic materials. Convincing scientific and engineering evidence that barriers retain their effectiveness over sufficiently long time periods is needed. A representative from the U.S. Nuclear Regulatory Commission reported that the agency is examining how much credit for isolation, as defined for regulatory purposes, can be given to various engineered barrier systems. Of concern to regulators and the public is the lack of available supporting technical bases and scientific proof of isolation.

The greatest chance of success for barrier deployment will result from use of proper installation techniques by contractors with demonstrated experience and skill, along with quality control and quality assurance measures. Successful installers may be able to provide some useful information to researchers, and vice versa, so that the technical engineering concept may be married to the construction process. Participants encouraged the collection and publication of case studies of valuable information on the performance of barrier systems that could be acquired by instrumenting existing barriers.

The summary of the National Research Council (1994) report on ground water cleanup noted the difficulty of cleaning up contaminated aquifers using pump-and-treat methods (pumping contaminated ground water to the surface for treatment). This presentation prompted a discussion of the causes of this difficulty, including inadequate technology, misapplication of existing technology, and lack of sufficient knowledge regarding the behavior of contaminants in the subsurface environment. The use of barriers to isolate materials in-place might be a reasonable

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement