75. Satoh, C., Takahashi, N., Asakawa, J., Hiyama, K., and Kodaira, M. 1993. Variations among Japanese of the factor IX gene (f9) detected by PCR-denaturing gradient gel electrophoresis. Am. J. Hum. Genet. 52: 167–175.

76. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). 1993. Sources and Effects of Ionizing Radiation: United Nations Committee on the Effects of Atomic Radiation: UNSCEAR 1993 Report to the General Assembly, with scientific annexes. United Nations, New York. Pp. 754–757.

77. UNSCEAR, 1993, Sources and Effects of Ionizing Radiation.

78. Neel, J.V., and Schull, W.J., eds. 1991. The Children of Atomic Bomb Survivors: A Genetic Study. National Academy Press. Washington, D.C.

79. Cox, L.S., and Lane, D.P. 1995. Tumour suppressors, kinases and changes: How p53 regulates the cell cycle in response to DNA damage. Bioessays 17: 501–508.

80. Donner, E.M., and Preston, R.J. 1996. The relationship between p53 status, DNA repair and chromatid aberration induction in G2 mouse embryo fibroblast cells treated with bleomycin. Carcinogenesis 17: 1161–1165.

81. Harvey, M., McArthur, M.J., Montgomery, C.A., Butel, J.S., Bradley, A., and Donehower, L.A. 1993. Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice. Nat. Genet. 5: 225–229.

82. Scott, D., Spreadborough, A., Levine, E., and Roberts, S.A. 1994. Genetic predisposition in breast cancer. Lancet 344: 1444.

83. Jones, L.A., Scott, D., Cowan, R., and Roberts, S.A. 1995. Abnormal radiosensitivity of lymphocyte from breast cancer patients with excessive normal tissue damage after radiotherapy: Chromosome aberrations after low dose-rate irradiation. Int. J. Radiat. Biol. 67: 519–528.

84. Wood, R.D., Aboussekhra, A., Biggerstaff, M., Jones, C.J., O'Donovan, A., Shivji, M.K.K., and Syzmkowski, D.E. 1993. Nucleotide excision repair of DNA by mammalian cell extracts and purified proteins. Pp. 625–632 in: DNA and Chromosomes. Vol. LVIII. Cold Spring Harbor Press, Cold Spring Harbor, N.Y.

85. Sancar, A. 1995. Excision repair in mammalian cells. J. Biol. Chem. 270: 15915–15918.

86. Demple, B., and Harrison, L. 1994. Repair of oxidative damage to DNA: Enzymology and biology. Annu. Rev. Biochem. 63: 915–948.

87. Jeggo, P.,39 A., Taccioli, G.E., and Jackson, S.P. 1995. Menage à trois: Double strand break repair, V(D)J recombination and DNA-PK. Bioessays 17: 949–957.

88. Demple and Harrison, 1994, Repair of oxidative damage to DNA.

89. Taccioli, G.E., Rathburn, G., Oltz, E., Stamato, T., Jeggo, P.A., and Alt., F. 1993. Impairment of V(D)J recombination in double-strand break repair mutants. Science 260: 207–210.

90. Alt, F.W., Oltz, E.M., Young, F., Gorman, J., Taccioli, G., and Chen, J. 1992. VDJ recombination. Immunol. Today 13: 306–314.

91. Anderson, C.W. 1993. DNA damage and the DNA-activated protein kinase. Trends Biochem. Sci. 18: 433–437.

92. Jackson, S.P. 1996. The recognition of DNA damage. Current Opinion in Genetics and Development 6:19–25.

93. Jackson, 1996, The recognition of DNA damage.

94. Leadon, S.A., Barbee, S.L., and Dunn, A.B. 1995. The yeast RAD2, but not RAD1, gene is involved in the transcription-coupled repair of thymine glycols. Mutat. Res. 337: 169–178.

95. Kuhn, A., Gottlieb, T.M., Jackson, S.P., and Grummt, I. 1995. DNA-dependent protein kinase: A potent inhibitor of transcription by RNA polymerase I. Genes Dev. 9: 193–203.

96. Blunt, T., Finnie, N.J., Taccioli, G.E., Smith, G.C.M., Demengeot, J., Gottlieb, T.M., Mizuta, R., Varghese, A.J., Alt, F.W., Jeggo, P.A., and Jackson, S.P. 1995. Defective DNA-dependent protein kinase activity linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell 80: 813–823.

97. Savitsky, K., Sfez, S., Tagle, D.A., Ziv, Y., Sartiel, A., Collins, F.S., Shiloh, Y., and Rotman, G. 1995. The complete sequence of the coding region of the ATM gene reveals similarity to cell cycle regulators in different species. Hum. Molec. Genet. 4: 2025–2032.

98. Morrow, D.M., Tagle, D.A., Shiloh, Y., Collins, F.S., and Hieter, P. 1995. TEL1, an S. cerevisiae homolog of the human gene mutated in ataxia telangiectasia, is functionally related to the yeast checkpoint gene MEC1. Cell 82: 831–840.

99. Greenwell, P.W., Kronmal, S.L., Porter, S.E., Gassenhuber, J., Overmaier, B., and Petes, T.P. 1995. TEL1, a gene involved in controlling telomere length in S. cerevisiae, is homologous to the human ataxia telangiectasia gene. Cell 82: 823–829.

100. Meyn, M.S. 1995. Ataxia telangiectasia and cellular responses to DNA damage. Cancer Res. 55: 5991–6001.

101. Swift, M., Morrell, D., Massey, R.B., and Chase, C.L. 1991. Incidence of cancer in 161 families affected by ataxia telangiectasia. New Engl. J. Med. 325: 1831–1836.

102. Scott et al., 1994, Genetic predisposition in breast cancer.

103. Jones, L.A., Scott, D., Cowan, R., and Roberts, S.A. 1995. Abnormal radiosensitivity of lymphocyte from breast cancer patients with excessive normal tissue damage after radiotherapy: Chromosome aberrations after low dose-rate irradiation. Int. J. Radiat. Biol. 67: 519-28.

104. Rasio, D., Negrini, M., and Croce, C.M. 1995. Genomic organization of the ATM locus involved in ataxia telangiectasia. Cancer Res. 55: 6053–6057.

105. Savitsky, K., Bar-Shira, A., Gilad, S., Rotman, G., Ziv, Y., Vanagaite, L., Tagle, D.A., Smith, S., Uziel, T., Sfez, S., Ashkenazi, M., Pecker, I., Frydman, M., Harnik, R., Patanjali, S.R., Simmons, A., Clines, G.A., Sartiel, A., Gatti, R.A., Chessa, L., Sanal, O., Lavin, M.F., Jaspers, N.J., Taylor, A.R., Arlett, C.F., Miki, T., Weissman, S.M., Lovett, M., Collins, F.S., and Shiloh, Y. 1995. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268: 1749–1753.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement