Click for next page ( 125


The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 124

OCR for page 124
EDWARD UHLER CONDON March 2,1902-March 26,1974 BY PHILIP M. MORSE THE MIDDLE THIRD of the twentieth century was the era of he- gemony of physics in American science. During that period Edward Uhler Condon was a leader in physics, in research of his own, in stimulating research in others, in applying physics, and in calling attention to the effects on all of us of its indis- criminate and irrational application. When he made his first contribution to theoretical physics in 1926, the word physics was not in the vocabularies of most Americans and the revolu- tionary concepts of quantum mechanics and relativity were just being worked out in Europe; by 1960 the applications of elec- tronics and solid-state physics had begun to change our lives irreversibly, and the implications of nuclear physics were mani- fest to everyone. Ed Condon contributed to each part of this explosive evolution. Condon's father, William Edward Condon, was a builder of railroads in the West. He and his wife, Carolyn Uhler Condon, moved from place to place as the construction jobs required. When Ed was born, on March 2, 1902, they happened to be in Alamogordo, New Mexico, an ironic coincidence not apparent until July 16, 1945. By the time he was ready for high school, the family had settled down in Oakland, California. Ed's rival interests, science ant! journalism, pulled him in different direc- tions. In the turbulent year of 1918, when he graduated, rather 125

OCR for page 124
126 BIOGRAPHICAL MEMOIRS than going on to college he became a reporter for the Oakland Enquirer. His experience in the ensuing three years had a last- ing effect on his attitude toward government and society. In his own words, "On the Inquirer I specialized in the news of organized labor.... The dock workers, the timber workers, and the migratory farm laborers .... ~ v The California state legislature had passed a strong bill defining criminal syndicalism and making it a felony. The politicians were looking for a place to use it. On November 9, 1919, I was the only reporter from a conservative newspaper to cover the organization meeting of the Communist Labor Party of Cali- fornia, as it was called then. I wrote lurid and sensational stories about this small group of one or two hundred persons, which resulted in indictments against them, and which required that I had to testify against them, in trial after trial, over the next several years. In this connection I became aware of open boast- ing by a police detective of his having framed some of the defendants in a matter where I knew the facts to be otherwise. The effect of this involvement on me was to wipe out any desire to be even an educated newspaperman; so I entered the univer- sity and went into physical science largely as a means of escape from the corruption of the world, in addition to the fact that I was genuinely interested in physical science." He entered as a freshman in the College of Chemistry of the University of California at Berkeley in 1921, but when he learned that his high school physics teacher, W. H. Williams, had joined the physics faculty at Berkeley he switched from chemistry to take Williams's courses in theoretical physics; thus his choice of career was determined. In that same year, 1922, he married Emilie Honzig, a tiny bundle of energy who en- were rlrnwn to communism. #Edward Uhler Condon, "Reminiscences of a Life In and Out of Quantum Mechanics," Proceedings of the 7th International Symposium on Atomic, Molec- ular, Solid State Theory and Quantum Biology, ed. Per-Olov Lowdin (New York: John Wiley 8c Sons, 1973), p. 9 (hereafter cited as "Reminiscences") .

OCR for page 124
EDWARD UHLER CONDON 127 couraged Ed in his scientific work and actively supported his . . . . . extracurricular actlvltles. At that time, as Condon has commented, "The physics department was comparatively weak in a research way, except for the recent addition to the faculty of R. T. Birge, who concentrated on the early development of the quantum theory interpretation of diatomic molecular band spectra, and of Leonard B. Loeb, who has spent a lifetime making important contributions to processes of ionization in gamest Ed did well, for he received his A.B. degree in three years with highest honors, went on directly to graduate work in physics, and received his Ph.D. in 1926. Birge was then making great progress in measuring and analyzing band spectral intensi- ties. Condon put these observations together with a suggestion of James Franck concerning the photodisintegration of diatomic molecules to come up with an explanation of the regularities in the intensities. He wrote it up over a couple of weekends and presented it to Birge as his Ph.D. thesis. The combined suggestion-explanation became known as the Franck-Condon principle, after Condon reworked it later, in the language of the newer quantum mechanics. In those years an education in physics was not complete without a year or two spent in Germany. Condon received a National Research Council fellowship and he and Emilie, with infant Marie (now Mrs. Wayne Thornton, fir.), spent the fall of 1926 in Gottingen and the spring of 1927 in Munich. He imbibed the probabilistic interpretation of quantum mechanics from Max Born and, under Arnold Sommerfeld, began the wave mechanical formulation of the Franck-Condon principle. Again the rivalry of interest between the gaining and the imparting of new knowledge intervened. Quoting Condon again, "By spring and summer of 1927, papers in quantum London, "Reminiscences," p. 10.

OCR for page 124
128 BIOGRAPHICAL MEMOIRS mechanics were appearing at a great rate. In those days a young theoretical physicist was supposed to keep abreast of progress in every area of theoretical physics. I became discouraged and decided that if this were the normal pace of work in my chosen field (which it was not!) then I was not equal to the task. About this time there appeared a help-wanted advertisement in the Physical Review for a man to write popular science for an industrial laboratory, the requirement being stated that the candidate must have newspaper writing experience as well as a Ph.D. in physics. I may well have been the only person in America with that combination at the time. At any rate I applied for the position, was interviewed for it in London, and accepted it. It turned out that the position was in the public relations department of the Bell Telephone Laboratories, then in its old quarters at 463 West Street along the Hudson River in lower Manhattan. "We returned to America and found an apartment near Columbia in October 1927.... At Bell Laboratories, C..~. Davisson and L. H. Germer had just done the experimental work on scattering of low-energy electrons by single crystals of nickel which led to one mode of discovery of electron diffrac- tion.... The importance of this work was not at first appreci- ated in the business management side of the Bell Labs, and I devoted a good deal of attention in the fall of 1927 to explaining to such people that the work was destined to win for the Bell Labs the first Nobel prize to be awarded to an industrial . . Organization.... "In that fall I soon found that the American physicists on the Atlantic Coast were by and large having as much trouble understanding and assimilating quantum mechanics as I had had in Germany.... The profession of theoretical physics was much smaller then than now. As I remember it, Gregory Breit, John Slater, John Van Vleck, and Edwin Kemble were about the only ones in America who were really active in research in

OCR for page 124
EDWARD UHLER CONDON quantum mechanics. 129 I soon found myself in demand as a colloquium speaker at various universities . . . and King en- couraged me to accept such invitations, even though they bore little if any relation to the work I was supposed to be doing for the telephone company. "I was asked by George Pegram to be a lecturer in physics at Columbia University in the spring of 1928.... I accepted and started on my first regular university appointment by giving two graduate courses, one in quantum mechanics and the other on electromagnetic theory of light.... Besides giving these courses I traveled around giving colloquium talks on quantum mechanics and also on the Franck-Condon principle. So great was the demand for young faculty who could deal with these subjects that in the spring I was offered six assistant professor- ships for the fall of 1929.... I ended up by taking the offer from Karl Compton to go to Princeton...." The chronicler of this biography first met Condon at Prince- ton in the fall of 1928. He was a new kind of professor. A close- cropped brush of black hair accentuated the roundness of his head, his broad face was usually adorned with a grin, and his brown eyes looked steadily but somewhat skeptically at one through rimless glasses. The western vocabulary, the proletarian outlook, the rough-edged kindlinessall contrasted with the eastern establishment manners that were then the Princeton norm. He was only a year older than the chronicler, but while his greater experience and maturity made a great deal of differ- ence to the student, it made no difference to the professor. Condon has remarked that this first year at Princeton, 1928- 1929, was the most productive in his life. He has said, "For teaching I gave a course in quantum mechanics again, improv- ing the notes of the previous Columbia course, and a junior course in classical mechanics of which the most outstanding #Condon, "Reminiscences," pp. 12-13.

OCR for page 124
130 BIOGRAPHICAL MEMOIRS student was E. Bright Wilson . . . now Mallincrodt professor of chemistry at Harvard. Philip M. Morse, who had received a doctorate under K. T. Compton, . . . took my course and we worked up the lecture notes into the book Quantum Mechanics (Condon and Morse), which was published by McGraw-Hill in the fall of 1929.... "I personally wrote the paper which gave a fuller statement of the quantum mechanics of the Franck-Condon principle.... By far the most important piece of work done that year was the development of the barrier leakage picture of alpha-particle radioactivity, done with R. W. Gurney. The same idea was developed almost simultaneously by George Gamow, then a postdoctoral fellow in Gottingen. This was the first application of quantum mechanics to details of inner structure of atomic nuclei, and at the same time its success gave a big boost to the probability interpretation of the intensity of the Schrodinger wave which was only being reluctantly accepted in some quarters." ~ Condon still was footloose. He accepted an offer of full professorship at the University of Minnesota for the fall of 1929. But within a year he decided he preferred the stimulation of congenial colleagues to the kudos of the full professorship, so after giving summer courses at Stanford, he returned to Princeton in 1930, where he remained until 1937. During that decade he began to show his ability to spot, energize, and guide emerging leaders in the next generation of theoretical physicists. Two of them have reported how he did it. George Shortley, who became professor of physics at Ohio State University and went into the field of operations research during and after World War II, writes: "I was a senior at the University of Minnesota, taking a physics minor in my electrical ~Condon, "Reminiscences," pp. Its.

OCR for page 124
EDWARD UHLER CONDON 131 engineering program. I signed up for both of his courses. His appearance was quite different from that of any professor I had ever seen. He was jovial, chubby, black-haired, crew-cut and boyish in appearance, wearing cream-colored plus-fours, after the fashion of the day for students, but decidedly not for faculty. One of his courses was the theory of atomic spectra, taught in the quantum-mechanical technique of Dirac before any use- able text was available. The other was a course in classical methods of mathematical physics. The two courses meshed perfectly because the same mathematical functions were used in both. Condon was a beautiful lecturer; he had the facility of 'making a difficult subject sound easy' whereas other professors often hacl the opposite tendency to 'make a simple subject sound difficult.' "These courses aroused my interest in the theory of atomic spectra and led eventually to my collaboration with Condon on the well-known book on this subject. In fact, later in this same senior year, Condon and I wrote and published our first joint research paper in this field. "Early in 1930 Condon decided to leave Minnesota and return to Princeton. With considerable difficulty he arranged for me to go with him to Princeton as a graduate student. He also arranged for me to be his research assistant, at a salary that would enable me to support myself. After teaching at Stanford in the summer of 1930, he picked me up in Iowa for the drive back to Princeton with his wife Emilie and their little child, Marie, called Madi; in fact Madi sat on my lap for most of the trip. "When I reported for my duties as research assistant he proposed the collaboration on the monograph on atomic spec- tra, and we proceeded to outline the chapters then and there. As indicative of the energy he expected of himself and of his students, he asked me the next morning how much I had writ-

OCR for page 124
132 BIOGRAPHICAL MEMOIRS ten. Fortunately I had applied myself the previous afternoon and evening and had the draft of half the introductory chapter to show him." And Frederick Seitz, president of the National Academy of Sciences from 1962 to 1969 and since then president of Rocke- feller University, writes: "I was a sophomore at Stanford Uni- versity and decided to do my bit to reverse negative trends in society by becoming a professional physicist. While still enjoying the feeling of euphoria brought on by this decision, I read in the university newspaper that the visiting professor in theoreti- cal physics for the summer quarter would be a brilliant young man, twenty-eight years old, who had discovered the Franck- Condon principle while a graduate student at Berkeley, had spent two years at the great centers of theoretical physics in Europe as a National Research Council fellow, and had held prominent posts at the Bell Telephone Laboratories, Princeton University, and the University of Minnesota. Just a year earlier, he and Ronald Gurney had given an interpretation of spon- taneous alpha disintegration of nuclei in terms of quantum mechanical tunneling. To top it all, the campus paper related that he had earned his way through Berkeley as one of the more worldly reporters for the Oakland Tribune. In this pursuit he had, among other things, stirred up a lively public discussion of whether a birdcage would weigh more or less when the bird was flying around inside instead of resting on its perch. "The visitor, Edward Condon, was slated to give a course in modern physics which would be open to duly qualified under- graduates. I succeeded in pursuading an indulgent father to provide the means to attend the summer session and, early i July, found myself perched on a chair in the front row of the lecture room waiting for the show to start. It was not a dis- appointment. Quotations not footnoted in this memoir are taken from personal letters to Philip M. Morse.

OCR for page 124
EDWARD UHLER CONDON 133 `'Precocious and crew-cut, Ed Condon exhibited even then all of the characteristics that have carried him through a life- time near the center of the stage. He was creative, energetic, perceptive, humorous, restless, eloquent, worldly and friendly. Moreover, he knew, on a first-name basis, most of the top-billec3 physicists on the planet and loved to spin endless anecdotes about them. This was very rich fare for an unclergraduate. Condon's lectures . . . were there as now a wonderful combina- tion of logic, anecdotes and humor.... In those days, long before physicists were taken very seriously by the public at large and when they still were all but unknown to congressmen and security officers, Condon was flamboyantly cheerful practically all of the time, his occasional bursts of wrath being directed at the petty annoyances of everyday life which plague us all. His bouts with various prominent individualsparticularly with General Leslie Groveslay far in the future.... "Condon was so deeply interested in other people that he quickly came to know personally everyone in the class who managed to act reasonably alive. The small band of embryonic physicists who dominated the front row in the lecture hall became his close friends.... With Condon's ardent help, con- tinued family indulgence, ant! some permissiveness on the part of the Princeton admissions committee, I followed him back to Princeton a year and a half later as a graduate student.... His lectures that spring were centered on Frenkel's book about the classical electromagnetic theory of light, which he embel- lished in countless ways. I still cherish a carbon copy of his notes...." ~ With the completion of The Theory of Atomic Spectra, Condon's interest returnee! to atomic nuclei. He collaborated with Gregory Breit on a paper on the photodisintegration of #Wesley E. Brittin and Halis Odabasi, eds., Topics in Modern Physics; a Trib- ute to Edward U. Condon (Boulder: Colo. Associated Univ. Press, 1971), Foreword by Frederick Seitz, pp. xxi-xxiii (hereafter cited as Topics in Modern Physics).

OCR for page 124
134 BIOGRAPHICAL MEMOIRS the deuteron. But, as he has written, "Much more important was the work done jointly with Breit and R. D. Present on the theoretical interpretation of the experimental results obtained by Tuve, Hafstad, and Heydenberg at the Carnegie Institution of Washington on the scattering of protons by protons at ener- gies up to about one million volts. These results showed quite clearly the charge independence of the strong nuclear force be- tween nucleons on which all modern nuclear theory is based." Between 1928 and 1938 Condon published two books- Quantum Mechanics and The Theory of Atomic Spectra, both with co-authors; nine papers on general quantum mechanics; six papers on atomic spectra, all but one with co-authors; eight papers on the quantum mechanics of molecules, all but two with co-authors; two papers on solid-state theory, one with a coauthor; and two papers on the biological effects of radiation. In addition, there were three articles in the American Physics Teacher on simple ways to understand physical concepts, two on semiphilosophical topics, and one, published in the Proceed- ings of the U.S. Naval Institute, that can be considered either as an early example of operations research or as an example of Ed's sense of humor. He had come across, in his -omnivorous reading, a set of heuristic rules for the amount of food a ship- board cook should prepare, as a function of the number of men to be served. Assuming that the rule represents a balance be- tween satisfying the men's shipboard appetites and reducing the amount of food left over, he determined the parameters of the normal distribution of the men's appetites that the rule inferred and then embellished it with comments on the implications of the distribution and on the validity of the conclusion that there was a nonzero fraction of the men with negative appetites. The conclusions seemed to puzzle some commentators in later issues of the Proceedings. This is by way of illustrating that, in spite #Condon, "Reminiscences," p. IS.

OCR for page 124
EDWARD UHLER CONDON 141 University in St. Louis, and later to come to Boulder as a professor and fellow of the Joint Institute for Laboratory Astro- physics [joint with the Bureau of Standards, thus formally re- establishing Ed's relationship with the Bureau that had never really been broken]. As the cold war slowly cried down the Department of Defense finally granted me the security clearance which had been improperly suspended in 1954 but this, I am proud to say, I have never used." The appointment to Washington University was the result of the efforts of Chancellor Arthur Compton, who not only wanted to add an outstanding physicist to the staff, but also realized that the nation as well as Condon would be the loser if the irrational chain of events were allowed to continue. At the University of Colorado he could finally settle down again to research in atomic theory with Halis Odabasi (now at the Uni- versity at Istanbul) with the intent of rewriting The Theory of Atomic Spectra, and in further work on the properties of glass. He continued to write and lecture on the need for peaceful, worldwide cooperation; he took on the job of editor of the Reviews of Modern Physics; he actively participated in the research of the Joint Institute of Laboratory Astrophysics; and he found time to be president of the American Association of Physics Teachers in 1964. And, in an incautious moment, he agreed to head a project, supported by the Office of Scientific Research of the Air Force, to investigate the many reports of uniclentified flying objects (UFOs), with which the Air Force had been plagued for nearly twenty years. This occupied much of his time during 1967 and 1968. The report of this project was published in 1969. Condon gave a light-hearted accountT of some of his experiences at a talk before the American Philosophical Society. The report has #Condon, "Reminiscences," p. 21. tEdward Uhler Condon, "UFO's I Have Loved and Lost," Proceedings of the American Philosophical Society 113(1969~:425.

OCR for page 124
142 BIOGRAPHICAL MEMOIRS been the subject of vituperative comment from persons anxious to continue to believe that flying saucers are visitors from outer space and who wish to see the government spend vast sums on further studies. Despite the views of many of his colleagues that the investigation was a waste of Condon's time, Seitz has said, "The introductory chapter of the report on UFO's, in which Condon describes with characteristic clarity his own view as a scientist on what constitutes worthwhile research, is a classic. It deserves to be a landmark in the journey science has taken since the days of Stevin, Galileo and Kepler." Edward Uhler Condon died on March 26, 1974. Two com- ments may serve to close this survey of his life. One is by one of his colleagues at the National Bureau of Standards, Churchill Eisenhart: "Condon was a brilliant scientist, with highly original ideas, a wide range of interests, a restless probing mind with voluminous information indexed for instant retrieval. He could meet with scientists of diverse specialities and stimulate each with fresh enthusiasm and new insights. He could elucidate scientific intricacies to non-scientists with clarity in layman's language. Whatever he knew he saw with crystal clarity; he could summarize it in a nutshell on a moment's notice or discuss it in detail with. experts, with equal ease. "He had an ever ready and exuberant sense of humor, a gift of repartee and could be wittily caustic when provoked. He was a cordial, genial, straightforward individual; fond of people, mathematics, science, chamber music and conversation; allergic to formality, fuzzymindedness, pomposity and all forms of physi- cal exercise. He was an active Quaker, a firm believer in human dignity, an outspoken liberal and anti-isolationist, who fervently hoped that international understanding and world peace could be furthered] by continuance of World War II alliances. He eBrittin and Odabasi, Topics in Modern Physics, Foreword by Frederick Seitz, . . p. XXVll.

OCR for page 124
EDWARD UHLER CONDON 143 gave freely of his counsel and his time; generously of his fi- nances and his home." ~ The other comes from Lewis M. Branscomb, a colleague at Boulder, now with IBM: "Watergate came as no surprise to Edward Condon, nor did its aftermath. I imagine he would like to have lived to see the outcome of the impeachment inquiry. But Condon understood and paid his share of the price of liberty. Somehow his idealism, his sense of humor and his inexhaustible energy made his relentless quest for a better world look like optimism. He was elected president of the AAAS during the height of his troubles with HUAC. He was presi- dent of the Society for Social Responsibility in Science (1968- 1969) and co-chairman of the National Committee for a Sane Nuclear Policy (1970~. He was appropriately honored on his retirement from JILA and the University of Colorado in the summer of 197G by the volumeT edited by Brittin and Odabasi mentioned earlier. Brittin relates a comment about Condon by E. Bright Wilson: 'Sometimes I think he looks for trouble,' Wilson said. Condon's comment: 'It's not hard to find.' "I Unfortunately it is not easy to find a brilliant scientist who is willing to speak out on questions of public policy, often with humor but always with determination, even in the face of official persecution. #Churchill Eisenhart, "Edward Uhler Condon," The Technical News Bulletin of the National Bureau of Standards, Dimensions 58(1974~:151. iBrittin and Odabasi, Topics in Modern Physics. 4:Branscomb, "Edward Uhler Condon," p. 70.

OCR for page 124
144 KEY TO ~BBREVIA TIONS BIOGRAPHICAL MEMOIRS BIBLIOGRAPHY Am. i. Phys. = American Journal of Physics Am. Phys. Teach. = American Physics Teacher J. Appl. Phys. = Journal of Applied Physics .T- Chem. Phys. = journal of Chemical Physics J. Franklin Inst. = Journal of the Franklin Institute i. Opt. Soc. Am. = journal of the Optical Society of America Philos. Mag. = Philosophical Magazine Phys. Rev. = Physical Review Proc. Natl. Acad. Sci. USA = Proceedings of the National Academy of Sciences of the United States of America Rev. Mod. Phys. = Reviews of Modern Physics Westinghouse Eng. = Westinghouse Engineer 1923 An erroneous experiment in gaseous diffusion. School Science and Mathematics, 23:415. 1924 A possible manifestation of directional hysteresis in iron. Phys. Rev., 23:665. (A) 1925 The age of the stars. Proc. Natl. Acad. Sci. USA, 11:125. With H. E. Marsh and L. B. Loeb. The theory of the radiometer. J. Opt. Soc. Am., 11:257. Curiosities of Mathematics. Little Blue Book no. 876. Gerard, Kansas: Haldeman-lulius Company. With L. B. Loeb. The theory of the range of alpha-particles. i. Franklin Inst., 99:595. 1926 Remarks on penetrating radiation. Proc. Natl. Acad. Sci. USA, 12:323. This bibliography of Edward U. Condon's works is taken from Topics in Modern Physics, ed. by Wesley E. Brittin and Halls Odabasi, pp. xxix-xxxiii, 1971, by Colorado Associated University Press.

OCR for page 124
EDWARD UHLER CONDON Theory of intensity distribution Phys. Rev., 28: 1182. 1927 145 in band systems. (Ph.D. thesis) Mean free paths in a gas whose molecules are attracting rigid elastic spheres. Philos. Mag., 3:604. The rapid fitting of a certain class of empirical formulae by the method of least squares. University of California Publications in Mathematics, 2:~. Coupling of electronic and nuclear motions in diatomic molecules. Proc. Natl. Acad. Sci. USA, 13:462. Wave mechanics and the normal state of the hydrogen molecule. Proc. Natl. Acad. Sci. USA, 13:466. Ober den Grundzustund des Wasserstoffmolekul nach der Wellen- mechanik. Verhandlungen der Deutschen Physikalischen Gesellschaft, 8: 19. With H. M. Terrill. Quantum phenomena in the biological action of X rays. Journal of Cancer Research, 11 :324. The Zeeman effect of the symmetrical top according to wave mechanics. Phys. Rev., 30:781. 1928 . _ . . ~ , Statistics of vocabulary. Science, 67:300. The physical pendulum in quantum mechanics. Phys. Rev., 31:891. Recent developments in quantum mechanics. Science, 68: 193. With R. W. Gurney. Wave mechanics and radio-active disintegra- tion. Nature, 122:439. Nuclear motions associated with electron transitions in diatomic molecules. Phys. Rev., 32:858. With H. D. Smyth. The critical potentials of molecular hydrogen. Proc. Natl. Acad. Sci. USA, 14:871. 1929 Quantum mechanics of momentum space. J. Franklin Inst., 207:467. With R. W. Gurney. Quantum mechanics and radio-active disinte- gration. Phys. Rev., 33:127. Remarks on uncertainty principles. Science, 69:573. With P. M. Morse. Quantum Mechanics. New York: McGraw-Hill Book Co. (Reprinted in 1964)

OCR for page 124
146 BIOGRAPHICAL MEMOIRS 1930 With l. E. Mack. An interpretation of Pauli's exclusion principle. Phys. Rev., 35:579. Complete dissociation of H2. Phys. Rev., 35:658. (See complete paper by W. Bleakney, Phys. Rev., 35:1180) With D. S. Villars. Predissociation of diatomic molecules from high rotational states. Phys. Rev., 35:1028. With G. H. Shortley. Singlet-triplet interval ratios in sp, sd, sf, p5S and d9s configurations. Phys. Rev., 35: 1342. The theory of complex spectra. Phys. Rev., 36: 1121. With l. E. Mack. A cosmological conjecture. Nature, 125:455. 1931 With G. H. Shortley. The theory of complex spectra. II. Phys. Rev., 37:1025. Quantum mechanics of collision processes. Rev. Mod. Phys., 3:43. 1932 Quantum phenomena in the biological action of radiant energy. I. Franklin Inst., 214: 105. With F. Seitz. Lorentz double refraction in the regular system. J. Opt. Soc. Am., 22:393. With R. F. Bacher. The spin of the neutron. Phys. Rev., 41:683. Production of infra-red spectra with electric fields. Phys. Rev., 41:759. 1933 Note on the velocity of sound. Am. Phys. Teach., 1: 18. Notes on the Stark effect. Phys. Rev., 43:648. With C. W. Ufford. Relative multiplet transition probabilities by spectroscopic stability. Phys. Rev., 44:740. 1934 Food and the theory of probability. Proceedings of the U.S. Naval Institute, 60:75. Absolute intensity of nebular lines. Astrophysical Journal, 79:217. Where do we live? Reflections on physical units and universal con- stants. Am. Phys. Teach., 2:63.

OCR for page 124
EDWARD UHLER CONDON 1935 147 With G. H. Shortley. The Theory of Atomic Spectra. New York: Cambridge Univ. Press. Three catch questions. Am. Phys. Teach., 3:85. 1936 With G. Breit. Energy distributions of neutrons slowed by elastic impacts. Phys. Rev., 49:229. Electron-neutron interaction. Phys. Rev., 49:459. With G. Breit. Interaction between protons as indicated by scatter- ing experiments. Phys. Rev., 49:866. (A) With G. Breit. The photoelectric effect of the deuteron. Phys. Rev. 49: 904; correction, 5 1: 56 ~ 1 937) . With G. Breit and R. D. Present. Theory of scattering of protons by protons. Phys. Rev., 50:825. With B. Cassen. On nuclear forces. Phys. Rev., 50:846. With R. B. Barnes and L. G. Bonner. Vibration spectra and molec- ular structure. I. General remarks and a study of the spectrum of the OH group. J. Chem. Phys., 4:772. 1937 With W. Bleakney and L. G. Smith. Ionization and dissociation of molecules by electron impact. journal of Physical Chemistry, 41:197. Immersion of the Fourier transform in a continuous group of func- tional transformations. Proc. Natl. Acad. Sci. USA., 23:158. With R. Greenwood. A new approach to the Hermite polynomials. Philos. Mag., 24:281. With M. Phillips and L. Eisenbud. Interaction of light nuclei. Phys. Rev.,51:382. (A) Theories of optical rotatory power. Rev. Mod. Phys., 9:432. With W. Altar and H. Eyring. One-electron rotatory power. J. Chem. Phys., 5:753. 1938 Mathematical models in modern physics. I. Franklin Inst., 225:255. Theory of nuclear structure. J. Franklin Inst., 227:801.

OCR for page 124
148 BIOGRAPHICAL MEMOIRS A simple derivation of the Maxwell-Boltzmann law. Phys. Rev., 54:937. Note on the external photo-electric effect of semi-conductors. Phys. Rev., 54:1089. 1940 Electronic generation of electromagnetic oscillations. J. Appl. Phys., 11:502. Recent advances in nuclear physics. Radiology, 34:581. 1941 Forced oscillations in cavity resonators. I. Appl. Phys., 12: 129. Development of high voltage for the production of neutrons and artificial radio-activity. Ohio Journal of Science, 41:131. With R. E. Williams. Progress in atom smashing. Westinghouse Eng., 1:15. Space-charge relations in the magnetron with plane electrodes. Pro- ceedings of the Institute of Radio Engineers, 29:664. 1942 Principles of micro-wave radio. Rev. Mod. Phys., 14:341. A physicist's peace. Am. J. Phys., 10:96. 1945 With I. A. Hipple. Detection of metastable ions with the mass spectrometer. Phys. Rev., 68:54. Physics gives us nuclear engineering. Westinghouse Eng., 5:167. 1946 With J. A. Hipple. Study of metastable ions with the mass spec- trometer. Phys. Rev., 69:257. With L. F. Curtiss. New units for the measurement of radioactivity. J. Chem. Phys., 14:399; also in Chemical & Engineering News, 24: 1802, and Phys. Rev., 69:72. Electronics and the future. Proceedings of the National Electronics Conference, vol. 2, p. 1. With J. A. Hipple and R. E. Fox. Metastable ions formed by electron impact in hydrocarbon gases. Phys. Rev., 69:347.

OCR for page 124
EDWARD UHLER CONDON 1947 149 Foundations of nuclear physics. Nucleonics, 1:3. Science advancing. The future of testing. ASTM Bulletin, 146:53. The Franck-Condon principle and related topics. Am. l. Phys., 15:365. (Retiring address as president of the American Physical Society, 19;46) 1948 With P. E. Condon. Effect of oscillations of the case on the rate of a watch. Am. l. Phys., 16: 14. 1949 With E. Maxwell. Investigation of the attractive forces between the persistent currents in a superconductor and the lattice. Phys. Rev., 76:578. Superconductivity and the Bohr magneton. Proc. Natl. Acad. Sci. USA, 35:488. The development of American physics. Am. J. Phys., 17:404. 1954 Physics of the glassy state. I. Constitution and structure. Am. l. Phys., 22:43. Physics of the glassy state. II. The transformation range. Am. J. Phys., 22:132. Physics of the glassy state. III. Strength of glass. Am. l. Phys., 22:224. Physics of the glassy state. IV. Radiation-sensitive glasses. Am. I. Phys., 22:310. 1955 A half-century of quantum physics. Science, 121:221. (Retiring address as president of AAAS, 1954) 1956 With K. R. Atkins and H. Seki. Flow of liquid helium through porous Vycor glass. Phys. Rev., 102:582. 1958 With H. Odishaw. Handbook of Physics. New York: McGraw-Hill Book Co.

OCR for page 124
150 BIOGRAPHICAL MEMOIRS 1961 Graphical representation for unit systems. Am. J. Phys., 29:487. 1962 Intermediate courses in physics. Am. J. Phys., 30: 166. Sixty years of quantum physics. Physics Today, 15:37. (Retiring presidential address to Philosophical Society of Washington, 1960) Professor A. H. Compton (biographical note) . Nature, 194:628. 1963 Lyman James Br~ggs (biographical memoir). In: American Phil- osophical Society Memoirs, p. 117. Philadelphia: The Society. 1964 Intensity-dependent absorption of light. Proc. Natl. Acad. Sci. USA, 52:635. 1966 With H. Odabasi. Spin-orbit interaction in self-consistent fields. In: Quantum Theory of Atoms, Molecules, Solid State. New York: Academic Press, Inc. William Shipley's barometer (1748~. Am. J. Phys., 34:358. 1967 With H. Odishaw. Hand book of Physics. 2d ed. New York: McGraw- Hill Book Co. 1968 Radiation transport in hot glass. Journal of Quantitative Spec- troscopy and Radiative Transfer, 8:369. On pair correlation in the theory of atomic structure. Rev. Mod. Phys., 40:872. The past and future of the Reviews of Modern Physics. Rev. Mod. Phys., 40:876.

OCR for page 124
EDWARD UHLER CONDON 1969 151 Scientific Study of Unidentified Flying Objects. PaperbackNew York: Bantam Books, Inc.; HardbackNew York: E. P. Dutton & Co., Inc. With H. Odabasi. Self-consistent field calculations for energy levels of 4, 5, 6, 7, 8, 14, 15 and 16 electron isoelectronic sequences. I. Opt. Soc. Am., 59:658. (Letter to the editor calling attention to detailed calculations contained in JILA reports no's. 95 and 97) UFO's I have loved and lost. Proceedings of the American Phil- osophical Society, 113:425. With H. Odabasi. Self-consistent field calculations of the ls22s22p3p configuration in the carbon isoelectronic sequence. In: In Honor of Philip M. Morse, ed. by H. Feshbach and K. U. Ingard. Cambridge: MIT Press.